Description: Integral of a constant function. (Contributed by Mario Carneiro, 12-Aug-2014) (Revised by Mario Carneiro, 23-Aug-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | itg2const | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reex | |
|
2 | 1 | a1i | |
3 | simpl3 | |
|
4 | 1re | |
|
5 | 0re | |
|
6 | 4 5 | ifcli | |
7 | 6 | a1i | |
8 | fconstmpt | |
|
9 | 8 | a1i | |
10 | eqidd | |
|
11 | 2 3 7 9 10 | offval2 | |
12 | ovif2 | |
|
13 | simp3 | |
|
14 | elrege0 | |
|
15 | 13 14 | sylib | |
16 | 15 | simpld | |
17 | 16 | recnd | |
18 | 17 | mulridd | |
19 | 17 | mul01d | |
20 | 18 19 | ifeq12d | |
21 | 12 20 | eqtrid | |
22 | 21 | mpteq2dv | |
23 | 11 22 | eqtrd | |
24 | eqid | |
|
25 | 24 | i1f1 | |
26 | 25 | 3adant3 | |
27 | 26 16 | i1fmulc | |
28 | 23 27 | eqeltrrd | |
29 | 15 | simprd | |
30 | 0le0 | |
|
31 | breq2 | |
|
32 | breq2 | |
|
33 | 31 32 | ifboth | |
34 | 29 30 33 | sylancl | |
35 | 34 | ralrimivw | |
36 | ax-resscn | |
|
37 | 36 | a1i | |
38 | 16 | adantr | |
39 | ifcl | |
|
40 | 38 5 39 | sylancl | |
41 | 40 | ralrimiva | |
42 | eqid | |
|
43 | 42 | fnmpt | |
44 | 41 43 | syl | |
45 | 37 44 | 0pledm | |
46 | 5 | a1i | |
47 | fconstmpt | |
|
48 | 47 | a1i | |
49 | eqidd | |
|
50 | 2 46 40 48 49 | ofrfval2 | |
51 | 45 50 | bitrd | |
52 | 35 51 | mpbird | |
53 | itg2itg1 | |
|
54 | 28 52 53 | syl2anc | |
55 | 26 16 | itg1mulc | |
56 | 23 | fveq2d | |
57 | 24 | itg11 | |
58 | 57 | 3adant3 | |
59 | 58 | oveq2d | |
60 | 55 56 59 | 3eqtr3d | |
61 | 54 60 | eqtrd | |