Metamath Proof Explorer


Theorem itg2const

Description: Integral of a constant function. (Contributed by Mario Carneiro, 12-Aug-2014) (Revised by Mario Carneiro, 23-Aug-2014)

Ref Expression
Assertion itg2const AdomvolvolAB0+∞2xifxAB0=BvolA

Proof

Step Hyp Ref Expression
1 reex V
2 1 a1i AdomvolvolAB0+∞V
3 simpl3 AdomvolvolAB0+∞xB0+∞
4 1re 1
5 0re 0
6 4 5 ifcli ifxA10
7 6 a1i AdomvolvolAB0+∞xifxA10
8 fconstmpt ×B=xB
9 8 a1i AdomvolvolAB0+∞×B=xB
10 eqidd AdomvolvolAB0+∞xifxA10=xifxA10
11 2 3 7 9 10 offval2 AdomvolvolAB0+∞×B×fxifxA10=xBifxA10
12 ovif2 BifxA10=ifxAB1B0
13 simp3 AdomvolvolAB0+∞B0+∞
14 elrege0 B0+∞B0B
15 13 14 sylib AdomvolvolAB0+∞B0B
16 15 simpld AdomvolvolAB0+∞B
17 16 recnd AdomvolvolAB0+∞B
18 17 mulridd AdomvolvolAB0+∞B1=B
19 17 mul01d AdomvolvolAB0+∞B0=0
20 18 19 ifeq12d AdomvolvolAB0+∞ifxAB1B0=ifxAB0
21 12 20 eqtrid AdomvolvolAB0+∞BifxA10=ifxAB0
22 21 mpteq2dv AdomvolvolAB0+∞xBifxA10=xifxAB0
23 11 22 eqtrd AdomvolvolAB0+∞×B×fxifxA10=xifxAB0
24 eqid xifxA10=xifxA10
25 24 i1f1 AdomvolvolAxifxA10dom1
26 25 3adant3 AdomvolvolAB0+∞xifxA10dom1
27 26 16 i1fmulc AdomvolvolAB0+∞×B×fxifxA10dom1
28 23 27 eqeltrrd AdomvolvolAB0+∞xifxAB0dom1
29 15 simprd AdomvolvolAB0+∞0B
30 0le0 00
31 breq2 B=ifxAB00B0ifxAB0
32 breq2 0=ifxAB0000ifxAB0
33 31 32 ifboth 0B000ifxAB0
34 29 30 33 sylancl AdomvolvolAB0+∞0ifxAB0
35 34 ralrimivw AdomvolvolAB0+∞x0ifxAB0
36 ax-resscn
37 36 a1i AdomvolvolAB0+∞
38 16 adantr AdomvolvolAB0+∞xB
39 ifcl B0ifxAB0
40 38 5 39 sylancl AdomvolvolAB0+∞xifxAB0
41 40 ralrimiva AdomvolvolAB0+∞xifxAB0
42 eqid xifxAB0=xifxAB0
43 42 fnmpt xifxAB0xifxAB0Fn
44 41 43 syl AdomvolvolAB0+∞xifxAB0Fn
45 37 44 0pledm AdomvolvolAB0+∞0𝑝fxifxAB0×0fxifxAB0
46 5 a1i AdomvolvolAB0+∞x0
47 fconstmpt ×0=x0
48 47 a1i AdomvolvolAB0+∞×0=x0
49 eqidd AdomvolvolAB0+∞xifxAB0=xifxAB0
50 2 46 40 48 49 ofrfval2 AdomvolvolAB0+∞×0fxifxAB0x0ifxAB0
51 45 50 bitrd AdomvolvolAB0+∞0𝑝fxifxAB0x0ifxAB0
52 35 51 mpbird AdomvolvolAB0+∞0𝑝fxifxAB0
53 itg2itg1 xifxAB0dom10𝑝fxifxAB02xifxAB0=1xifxAB0
54 28 52 53 syl2anc AdomvolvolAB0+∞2xifxAB0=1xifxAB0
55 26 16 itg1mulc AdomvolvolAB0+∞1×B×fxifxA10=B1xifxA10
56 23 fveq2d AdomvolvolAB0+∞1×B×fxifxA10=1xifxAB0
57 24 itg11 AdomvolvolA1xifxA10=volA
58 57 3adant3 AdomvolvolAB0+∞1xifxA10=volA
59 58 oveq2d AdomvolvolAB0+∞B1xifxA10=BvolA
60 55 56 59 3eqtr3d AdomvolvolAB0+∞1xifxAB0=BvolA
61 54 60 eqtrd AdomvolvolAB0+∞2xifxAB0=BvolA