Metamath Proof Explorer


Theorem itgneg

Description: Negation of an integral. (Contributed by Mario Carneiro, 25-Aug-2014)

Ref Expression
Hypotheses itgcnval.1 φxABV
itgcnval.2 φxAB𝐿1
Assertion itgneg φABdx=ABdx

Proof

Step Hyp Ref Expression
1 itgcnval.1 φxABV
2 itgcnval.2 φxAB𝐿1
3 iblmbf xAB𝐿1xABMblFn
4 2 3 syl φxABMblFn
5 4 1 mbfmptcl φxAB
6 5 recld φxAB
7 5 iblcn φxAB𝐿1xAB𝐿1xAB𝐿1
8 2 7 mpbid φxAB𝐿1xAB𝐿1
9 8 simpld φxAB𝐿1
10 6 9 itgcl φABdx
11 ax-icn i
12 5 imcld φxAB
13 8 simprd φxAB𝐿1
14 12 13 itgcl φABdx
15 mulcl iABdxiABdx
16 11 14 15 sylancr φiABdx
17 10 16 negdid φABdx+iABdx=-ABdx+iABdx
18 0re 0
19 ifcl B0if0BB0
20 6 18 19 sylancl φxAif0BB0
21 6 iblre φxAB𝐿1xAif0BB0𝐿1xAif0BB0𝐿1
22 9 21 mpbid φxAif0BB0𝐿1xAif0BB0𝐿1
23 22 simpld φxAif0BB0𝐿1
24 20 23 itgcl φAif0BB0dx
25 6 renegcld φxAB
26 ifcl B0if0BB0
27 25 18 26 sylancl φxAif0BB0
28 22 simprd φxAif0BB0𝐿1
29 27 28 itgcl φAif0BB0dx
30 24 29 negsubdi2d φAif0BB0dxAif0BB0dx=Aif0BB0dxAif0BB0dx
31 6 9 itgreval φABdx=Aif0BB0dxAif0BB0dx
32 31 negeqd φABdx=Aif0BB0dxAif0BB0dx
33 5 negcld φxAB
34 33 recld φxAB
35 1 2 iblneg φxAB𝐿1
36 33 iblcn φxAB𝐿1xAB𝐿1xAB𝐿1
37 35 36 mpbid φxAB𝐿1xAB𝐿1
38 37 simpld φxAB𝐿1
39 34 38 itgreval φABdx=Aif0BB0dxAif0BB0dx
40 5 renegd φxAB=B
41 40 breq2d φxA0B0B
42 41 40 ifbieq1d φxAif0BB0=if0BB0
43 42 itgeq2dv φAif0BB0dx=Aif0BB0dx
44 40 negeqd φxAB=B
45 6 recnd φxAB
46 45 negnegd φxAB=B
47 44 46 eqtrd φxAB=B
48 47 breq2d φxA0B0B
49 48 47 ifbieq1d φxAif0BB0=if0BB0
50 49 itgeq2dv φAif0BB0dx=Aif0BB0dx
51 43 50 oveq12d φAif0BB0dxAif0BB0dx=Aif0BB0dxAif0BB0dx
52 39 51 eqtrd φABdx=Aif0BB0dxAif0BB0dx
53 30 32 52 3eqtr4d φABdx=ABdx
54 mulneg2 iABdxiABdx=iABdx
55 11 14 54 sylancr φiABdx=iABdx
56 ifcl B0if0BB0
57 12 18 56 sylancl φxAif0BB0
58 12 iblre φxAB𝐿1xAif0BB0𝐿1xAif0BB0𝐿1
59 13 58 mpbid φxAif0BB0𝐿1xAif0BB0𝐿1
60 59 simpld φxAif0BB0𝐿1
61 57 60 itgcl φAif0BB0dx
62 12 renegcld φxAB
63 ifcl B0if0BB0
64 62 18 63 sylancl φxAif0BB0
65 59 simprd φxAif0BB0𝐿1
66 64 65 itgcl φAif0BB0dx
67 61 66 negsubdi2d φAif0BB0dxAif0BB0dx=Aif0BB0dxAif0BB0dx
68 5 imnegd φxAB=B
69 68 breq2d φxA0B0B
70 69 68 ifbieq1d φxAif0BB0=if0BB0
71 70 itgeq2dv φAif0BB0dx=Aif0BB0dx
72 68 negeqd φxAB=B
73 12 recnd φxAB
74 73 negnegd φxAB=B
75 72 74 eqtrd φxAB=B
76 75 breq2d φxA0B0B
77 76 75 ifbieq1d φxAif0BB0=if0BB0
78 77 itgeq2dv φAif0BB0dx=Aif0BB0dx
79 71 78 oveq12d φAif0BB0dxAif0BB0dx=Aif0BB0dxAif0BB0dx
80 67 79 eqtr4d φAif0BB0dxAif0BB0dx=Aif0BB0dxAif0BB0dx
81 12 13 itgreval φABdx=Aif0BB0dxAif0BB0dx
82 81 negeqd φABdx=Aif0BB0dxAif0BB0dx
83 33 imcld φxAB
84 37 simprd φxAB𝐿1
85 83 84 itgreval φABdx=Aif0BB0dxAif0BB0dx
86 80 82 85 3eqtr4d φABdx=ABdx
87 86 oveq2d φiABdx=iABdx
88 55 87 eqtr3d φiABdx=iABdx
89 53 88 oveq12d φ-ABdx+iABdx=ABdx+iABdx
90 17 89 eqtrd φABdx+iABdx=ABdx+iABdx
91 1 2 itgcnval φABdx=ABdx+iABdx
92 91 negeqd φABdx=ABdx+iABdx
93 33 35 itgcnval φABdx=ABdx+iABdx
94 90 92 93 3eqtr4d φABdx=ABdx