Metamath Proof Explorer


Theorem kqnrmlem2

Description: If the Kolmogorov quotient of a space is normal then so is the original space. (Contributed by Mario Carneiro, 25-Aug-2015)

Ref Expression
Hypothesis kqval.2 F=xXyJ|xy
Assertion kqnrmlem2 JTopOnXKQJNrmJNrm

Proof

Step Hyp Ref Expression
1 kqval.2 F=xXyJ|xy
2 topontop JTopOnXJTop
3 2 adantr JTopOnXKQJNrmJTop
4 simplr JTopOnXKQJNrmzJwClsdJ𝒫zKQJNrm
5 simpll JTopOnXKQJNrmzJwClsdJ𝒫zJTopOnX
6 simprl JTopOnXKQJNrmzJwClsdJ𝒫zzJ
7 1 kqopn JTopOnXzJFzKQJ
8 5 6 7 syl2anc JTopOnXKQJNrmzJwClsdJ𝒫zFzKQJ
9 simprr JTopOnXKQJNrmzJwClsdJ𝒫zwClsdJ𝒫z
10 9 elin1d JTopOnXKQJNrmzJwClsdJ𝒫zwClsdJ
11 1 kqcld JTopOnXwClsdJFwClsdKQJ
12 5 10 11 syl2anc JTopOnXKQJNrmzJwClsdJ𝒫zFwClsdKQJ
13 9 elin2d JTopOnXKQJNrmzJwClsdJ𝒫zw𝒫z
14 elpwi w𝒫zwz
15 imass2 wzFwFz
16 13 14 15 3syl JTopOnXKQJNrmzJwClsdJ𝒫zFwFz
17 nrmsep3 KQJNrmFzKQJFwClsdKQJFwFzmKQJFwmclsKQJmFz
18 4 8 12 16 17 syl13anc JTopOnXKQJNrmzJwClsdJ𝒫zmKQJFwmclsKQJmFz
19 simplll JTopOnXKQJNrmzJwClsdJ𝒫zmKQJFwmclsKQJmFzJTopOnX
20 1 kqid JTopOnXFJCnKQJ
21 19 20 syl JTopOnXKQJNrmzJwClsdJ𝒫zmKQJFwmclsKQJmFzFJCnKQJ
22 simprl JTopOnXKQJNrmzJwClsdJ𝒫zmKQJFwmclsKQJmFzmKQJ
23 cnima FJCnKQJmKQJF-1mJ
24 21 22 23 syl2anc JTopOnXKQJNrmzJwClsdJ𝒫zmKQJFwmclsKQJmFzF-1mJ
25 simprrl JTopOnXKQJNrmzJwClsdJ𝒫zmKQJFwmclsKQJmFzFwm
26 1 kqffn JTopOnXFFnX
27 fnfun FFnXFunF
28 19 26 27 3syl JTopOnXKQJNrmzJwClsdJ𝒫zmKQJFwmclsKQJmFzFunF
29 10 adantr JTopOnXKQJNrmzJwClsdJ𝒫zmKQJFwmclsKQJmFzwClsdJ
30 eqid J=J
31 30 cldss wClsdJwJ
32 29 31 syl JTopOnXKQJNrmzJwClsdJ𝒫zmKQJFwmclsKQJmFzwJ
33 fndm FFnXdomF=X
34 19 26 33 3syl JTopOnXKQJNrmzJwClsdJ𝒫zmKQJFwmclsKQJmFzdomF=X
35 toponuni JTopOnXX=J
36 19 35 syl JTopOnXKQJNrmzJwClsdJ𝒫zmKQJFwmclsKQJmFzX=J
37 34 36 eqtrd JTopOnXKQJNrmzJwClsdJ𝒫zmKQJFwmclsKQJmFzdomF=J
38 32 37 sseqtrrd JTopOnXKQJNrmzJwClsdJ𝒫zmKQJFwmclsKQJmFzwdomF
39 funimass3 FunFwdomFFwmwF-1m
40 28 38 39 syl2anc JTopOnXKQJNrmzJwClsdJ𝒫zmKQJFwmclsKQJmFzFwmwF-1m
41 25 40 mpbid JTopOnXKQJNrmzJwClsdJ𝒫zmKQJFwmclsKQJmFzwF-1m
42 1 kqtopon JTopOnXKQJTopOnranF
43 topontop KQJTopOnranFKQJTop
44 19 42 43 3syl JTopOnXKQJNrmzJwClsdJ𝒫zmKQJFwmclsKQJmFzKQJTop
45 elssuni mKQJmKQJ
46 45 ad2antrl JTopOnXKQJNrmzJwClsdJ𝒫zmKQJFwmclsKQJmFzmKQJ
47 eqid KQJ=KQJ
48 47 clscld KQJTopmKQJclsKQJmClsdKQJ
49 44 46 48 syl2anc JTopOnXKQJNrmzJwClsdJ𝒫zmKQJFwmclsKQJmFzclsKQJmClsdKQJ
50 cnclima FJCnKQJclsKQJmClsdKQJF-1clsKQJmClsdJ
51 21 49 50 syl2anc JTopOnXKQJNrmzJwClsdJ𝒫zmKQJFwmclsKQJmFzF-1clsKQJmClsdJ
52 47 sscls KQJTopmKQJmclsKQJm
53 44 46 52 syl2anc JTopOnXKQJNrmzJwClsdJ𝒫zmKQJFwmclsKQJmFzmclsKQJm
54 imass2 mclsKQJmF-1mF-1clsKQJm
55 53 54 syl JTopOnXKQJNrmzJwClsdJ𝒫zmKQJFwmclsKQJmFzF-1mF-1clsKQJm
56 30 clsss2 F-1clsKQJmClsdJF-1mF-1clsKQJmclsJF-1mF-1clsKQJm
57 51 55 56 syl2anc JTopOnXKQJNrmzJwClsdJ𝒫zmKQJFwmclsKQJmFzclsJF-1mF-1clsKQJm
58 simprrr JTopOnXKQJNrmzJwClsdJ𝒫zmKQJFwmclsKQJmFzclsKQJmFz
59 imass2 clsKQJmFzF-1clsKQJmF-1Fz
60 58 59 syl JTopOnXKQJNrmzJwClsdJ𝒫zmKQJFwmclsKQJmFzF-1clsKQJmF-1Fz
61 6 adantr JTopOnXKQJNrmzJwClsdJ𝒫zmKQJFwmclsKQJmFzzJ
62 1 kqsat JTopOnXzJF-1Fz=z
63 19 61 62 syl2anc JTopOnXKQJNrmzJwClsdJ𝒫zmKQJFwmclsKQJmFzF-1Fz=z
64 60 63 sseqtrd JTopOnXKQJNrmzJwClsdJ𝒫zmKQJFwmclsKQJmFzF-1clsKQJmz
65 57 64 sstrd JTopOnXKQJNrmzJwClsdJ𝒫zmKQJFwmclsKQJmFzclsJF-1mz
66 sseq2 u=F-1mwuwF-1m
67 fveq2 u=F-1mclsJu=clsJF-1m
68 67 sseq1d u=F-1mclsJuzclsJF-1mz
69 66 68 anbi12d u=F-1mwuclsJuzwF-1mclsJF-1mz
70 69 rspcev F-1mJwF-1mclsJF-1mzuJwuclsJuz
71 24 41 65 70 syl12anc JTopOnXKQJNrmzJwClsdJ𝒫zmKQJFwmclsKQJmFzuJwuclsJuz
72 18 71 rexlimddv JTopOnXKQJNrmzJwClsdJ𝒫zuJwuclsJuz
73 72 ralrimivva JTopOnXKQJNrmzJwClsdJ𝒫zuJwuclsJuz
74 isnrm JNrmJTopzJwClsdJ𝒫zuJwuclsJuz
75 3 73 74 sylanbrc JTopOnXKQJNrmJNrm