Metamath Proof Explorer


Theorem lclkrlem2m

Description: Lemma for lclkr . Construct a vector B that makes the sum of functionals zero. Combine with B e. V to shorten overall proof. (Contributed by NM, 17-Jan-2015)

Ref Expression
Hypotheses lclkrlem2m.v V=BaseU
lclkrlem2m.t ·˙=U
lclkrlem2m.s S=ScalarU
lclkrlem2m.q ×˙=S
lclkrlem2m.z 0˙=0S
lclkrlem2m.i I=invrS
lclkrlem2m.m -˙=-U
lclkrlem2m.f F=LFnlU
lclkrlem2m.d D=LDualU
lclkrlem2m.p +˙=+D
lclkrlem2m.x φXV
lclkrlem2m.y φYV
lclkrlem2m.e φEF
lclkrlem2m.g φGF
lclkrlem2m.w φULVec
lclkrlem2m.b B=X-˙E+˙GX×˙IE+˙GY·˙Y
lclkrlem2m.n φE+˙GY0˙
Assertion lclkrlem2m φBVE+˙GB=0˙

Proof

Step Hyp Ref Expression
1 lclkrlem2m.v V=BaseU
2 lclkrlem2m.t ·˙=U
3 lclkrlem2m.s S=ScalarU
4 lclkrlem2m.q ×˙=S
5 lclkrlem2m.z 0˙=0S
6 lclkrlem2m.i I=invrS
7 lclkrlem2m.m -˙=-U
8 lclkrlem2m.f F=LFnlU
9 lclkrlem2m.d D=LDualU
10 lclkrlem2m.p +˙=+D
11 lclkrlem2m.x φXV
12 lclkrlem2m.y φYV
13 lclkrlem2m.e φEF
14 lclkrlem2m.g φGF
15 lclkrlem2m.w φULVec
16 lclkrlem2m.b B=X-˙E+˙GX×˙IE+˙GY·˙Y
17 lclkrlem2m.n φE+˙GY0˙
18 lveclmod ULVecULMod
19 15 18 syl φULMod
20 lmodgrp ULModUGrp
21 19 20 syl φUGrp
22 3 lmodring ULModSRing
23 19 22 syl φSRing
24 8 9 10 19 13 14 ldualvaddcl φE+˙GF
25 eqid BaseS=BaseS
26 3 25 1 8 lflcl ULVecE+˙GFXVE+˙GXBaseS
27 15 24 11 26 syl3anc φE+˙GXBaseS
28 3 lvecdrng ULVecSDivRing
29 15 28 syl φSDivRing
30 3 25 1 8 lflcl ULVecE+˙GFYVE+˙GYBaseS
31 15 24 12 30 syl3anc φE+˙GYBaseS
32 25 5 6 drnginvrcl SDivRingE+˙GYBaseSE+˙GY0˙IE+˙GYBaseS
33 29 31 17 32 syl3anc φIE+˙GYBaseS
34 25 4 ringcl SRingE+˙GXBaseSIE+˙GYBaseSE+˙GX×˙IE+˙GYBaseS
35 23 27 33 34 syl3anc φE+˙GX×˙IE+˙GYBaseS
36 1 3 2 25 lmodvscl ULModE+˙GX×˙IE+˙GYBaseSYVE+˙GX×˙IE+˙GY·˙YV
37 19 35 12 36 syl3anc φE+˙GX×˙IE+˙GY·˙YV
38 1 7 grpsubcl UGrpXVE+˙GX×˙IE+˙GY·˙YVX-˙E+˙GX×˙IE+˙GY·˙YV
39 21 11 37 38 syl3anc φX-˙E+˙GX×˙IE+˙GY·˙YV
40 16 39 eqeltrid φBV
41 16 fveq2i E+˙GB=E+˙GX-˙E+˙GX×˙IE+˙GY·˙Y
42 eqid -S=-S
43 3 42 1 7 8 lflsub ULModE+˙GFXVE+˙GX×˙IE+˙GY·˙YVE+˙GX-˙E+˙GX×˙IE+˙GY·˙Y=E+˙GX-SE+˙GE+˙GX×˙IE+˙GY·˙Y
44 19 24 11 37 43 syl112anc φE+˙GX-˙E+˙GX×˙IE+˙GY·˙Y=E+˙GX-SE+˙GE+˙GX×˙IE+˙GY·˙Y
45 3 25 4 1 2 8 lflmul ULModE+˙GFE+˙GX×˙IE+˙GYBaseSYVE+˙GE+˙GX×˙IE+˙GY·˙Y=E+˙GX×˙IE+˙GY×˙E+˙GY
46 19 24 35 12 45 syl112anc φE+˙GE+˙GX×˙IE+˙GY·˙Y=E+˙GX×˙IE+˙GY×˙E+˙GY
47 25 4 ringass SRingE+˙GXBaseSIE+˙GYBaseSE+˙GYBaseSE+˙GX×˙IE+˙GY×˙E+˙GY=E+˙GX×˙IE+˙GY×˙E+˙GY
48 23 27 33 31 47 syl13anc φE+˙GX×˙IE+˙GY×˙E+˙GY=E+˙GX×˙IE+˙GY×˙E+˙GY
49 eqid 1S=1S
50 25 5 4 49 6 drnginvrl SDivRingE+˙GYBaseSE+˙GY0˙IE+˙GY×˙E+˙GY=1S
51 29 31 17 50 syl3anc φIE+˙GY×˙E+˙GY=1S
52 51 oveq2d φE+˙GX×˙IE+˙GY×˙E+˙GY=E+˙GX×˙1S
53 48 52 eqtrd φE+˙GX×˙IE+˙GY×˙E+˙GY=E+˙GX×˙1S
54 25 4 49 ringridm SRingE+˙GXBaseSE+˙GX×˙1S=E+˙GX
55 23 27 54 syl2anc φE+˙GX×˙1S=E+˙GX
56 46 53 55 3eqtrd φE+˙GE+˙GX×˙IE+˙GY·˙Y=E+˙GX
57 56 oveq2d φE+˙GX-SE+˙GE+˙GX×˙IE+˙GY·˙Y=E+˙GX-SE+˙GX
58 ringgrp SRingSGrp
59 23 58 syl φSGrp
60 25 5 42 grpsubid SGrpE+˙GXBaseSE+˙GX-SE+˙GX=0˙
61 59 27 60 syl2anc φE+˙GX-SE+˙GX=0˙
62 44 57 61 3eqtrd φE+˙GX-˙E+˙GX×˙IE+˙GY·˙Y=0˙
63 41 62 eqtrid φE+˙GB=0˙
64 40 63 jca φBVE+˙GB=0˙