Step |
Hyp |
Ref |
Expression |
1 |
|
lclkrlem2m.v |
|
2 |
|
lclkrlem2m.t |
|
3 |
|
lclkrlem2m.s |
|
4 |
|
lclkrlem2m.q |
|
5 |
|
lclkrlem2m.z |
|
6 |
|
lclkrlem2m.i |
|
7 |
|
lclkrlem2m.m |
|
8 |
|
lclkrlem2m.f |
|
9 |
|
lclkrlem2m.d |
|
10 |
|
lclkrlem2m.p |
|
11 |
|
lclkrlem2m.x |
|
12 |
|
lclkrlem2m.y |
|
13 |
|
lclkrlem2m.e |
|
14 |
|
lclkrlem2m.g |
|
15 |
|
lclkrlem2m.w |
|
16 |
|
lclkrlem2m.b |
|
17 |
|
lclkrlem2m.n |
|
18 |
|
lveclmod |
|
19 |
15 18
|
syl |
|
20 |
|
lmodgrp |
|
21 |
19 20
|
syl |
|
22 |
3
|
lmodring |
|
23 |
19 22
|
syl |
|
24 |
8 9 10 19 13 14
|
ldualvaddcl |
|
25 |
|
eqid |
|
26 |
3 25 1 8
|
lflcl |
|
27 |
15 24 11 26
|
syl3anc |
|
28 |
3
|
lvecdrng |
|
29 |
15 28
|
syl |
|
30 |
3 25 1 8
|
lflcl |
|
31 |
15 24 12 30
|
syl3anc |
|
32 |
25 5 6
|
drnginvrcl |
|
33 |
29 31 17 32
|
syl3anc |
|
34 |
25 4
|
ringcl |
|
35 |
23 27 33 34
|
syl3anc |
|
36 |
1 3 2 25
|
lmodvscl |
|
37 |
19 35 12 36
|
syl3anc |
|
38 |
1 7
|
grpsubcl |
|
39 |
21 11 37 38
|
syl3anc |
|
40 |
16 39
|
eqeltrid |
|
41 |
16
|
fveq2i |
|
42 |
|
eqid |
|
43 |
3 42 1 7 8
|
lflsub |
|
44 |
19 24 11 37 43
|
syl112anc |
|
45 |
3 25 4 1 2 8
|
lflmul |
|
46 |
19 24 35 12 45
|
syl112anc |
|
47 |
25 4
|
ringass |
|
48 |
23 27 33 31 47
|
syl13anc |
|
49 |
|
eqid |
|
50 |
25 5 4 49 6
|
drnginvrl |
|
51 |
29 31 17 50
|
syl3anc |
|
52 |
51
|
oveq2d |
|
53 |
48 52
|
eqtrd |
|
54 |
25 4 49
|
ringridm |
|
55 |
23 27 54
|
syl2anc |
|
56 |
46 53 55
|
3eqtrd |
|
57 |
56
|
oveq2d |
|
58 |
|
ringgrp |
|
59 |
23 58
|
syl |
|
60 |
25 5 42
|
grpsubid |
|
61 |
59 27 60
|
syl2anc |
|
62 |
44 57 61
|
3eqtrd |
|
63 |
41 62
|
eqtrid |
|
64 |
40 63
|
jca |
|