Description: Lemma for lclkr . Construct a vector B that makes the sum of functionals zero. Combine with B e. V to shorten overall proof. (Contributed by NM, 17-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lclkrlem2m.v | |
|
lclkrlem2m.t | |
||
lclkrlem2m.s | |
||
lclkrlem2m.q | |
||
lclkrlem2m.z | |
||
lclkrlem2m.i | |
||
lclkrlem2m.m | |
||
lclkrlem2m.f | |
||
lclkrlem2m.d | |
||
lclkrlem2m.p | |
||
lclkrlem2m.x | |
||
lclkrlem2m.y | |
||
lclkrlem2m.e | |
||
lclkrlem2m.g | |
||
lclkrlem2m.w | |
||
lclkrlem2m.b | |
||
lclkrlem2m.n | |
||
Assertion | lclkrlem2m | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lclkrlem2m.v | |
|
2 | lclkrlem2m.t | |
|
3 | lclkrlem2m.s | |
|
4 | lclkrlem2m.q | |
|
5 | lclkrlem2m.z | |
|
6 | lclkrlem2m.i | |
|
7 | lclkrlem2m.m | |
|
8 | lclkrlem2m.f | |
|
9 | lclkrlem2m.d | |
|
10 | lclkrlem2m.p | |
|
11 | lclkrlem2m.x | |
|
12 | lclkrlem2m.y | |
|
13 | lclkrlem2m.e | |
|
14 | lclkrlem2m.g | |
|
15 | lclkrlem2m.w | |
|
16 | lclkrlem2m.b | |
|
17 | lclkrlem2m.n | |
|
18 | lveclmod | |
|
19 | 15 18 | syl | |
20 | lmodgrp | |
|
21 | 19 20 | syl | |
22 | 3 | lmodring | |
23 | 19 22 | syl | |
24 | 8 9 10 19 13 14 | ldualvaddcl | |
25 | eqid | |
|
26 | 3 25 1 8 | lflcl | |
27 | 15 24 11 26 | syl3anc | |
28 | 3 | lvecdrng | |
29 | 15 28 | syl | |
30 | 3 25 1 8 | lflcl | |
31 | 15 24 12 30 | syl3anc | |
32 | 25 5 6 | drnginvrcl | |
33 | 29 31 17 32 | syl3anc | |
34 | 25 4 | ringcl | |
35 | 23 27 33 34 | syl3anc | |
36 | 1 3 2 25 | lmodvscl | |
37 | 19 35 12 36 | syl3anc | |
38 | 1 7 | grpsubcl | |
39 | 21 11 37 38 | syl3anc | |
40 | 16 39 | eqeltrid | |
41 | 16 | fveq2i | |
42 | eqid | |
|
43 | 3 42 1 7 8 | lflsub | |
44 | 19 24 11 37 43 | syl112anc | |
45 | 3 25 4 1 2 8 | lflmul | |
46 | 19 24 35 12 45 | syl112anc | |
47 | 25 4 | ringass | |
48 | 23 27 33 31 47 | syl13anc | |
49 | eqid | |
|
50 | 25 5 4 49 6 | drnginvrl | |
51 | 29 31 17 50 | syl3anc | |
52 | 51 | oveq2d | |
53 | 48 52 | eqtrd | |
54 | 25 4 49 | ringridm | |
55 | 23 27 54 | syl2anc | |
56 | 46 53 55 | 3eqtrd | |
57 | 56 | oveq2d | |
58 | ringgrp | |
|
59 | 23 58 | syl | |
60 | 25 5 42 | grpsubid | |
61 | 59 27 60 | syl2anc | |
62 | 44 57 61 | 3eqtrd | |
63 | 41 62 | eqtrid | |
64 | 40 63 | jca | |