Metamath Proof Explorer


Theorem lcmfunsnlem2lem1

Description: Lemma 1 for lcmfunsnlem2 . (Contributed by AV, 26-Aug-2020)

Ref Expression
Assertion lcmfunsnlem2lem1 0yz0n0nzyyFinkmymklcm_yknlcm_yn=lcm_ylcmnkiyzniklcm_yzlcmnk

Proof

Step Hyp Ref Expression
1 nfv k0yz0n0
2 nfv kn
3 nfv kzyyFin
4 nfra1 kkmymklcm_yk
5 nfv knlcm_yn=lcm_ylcmn
6 4 5 nfan kkmymklcm_yknlcm_yn=lcm_ylcmn
7 3 6 nfan kzyyFinkmymklcm_yknlcm_yn=lcm_ylcmn
8 2 7 nfan knzyyFinkmymklcm_yknlcm_yn=lcm_ylcmn
9 1 8 nfan k0yz0n0nzyyFinkmymklcm_yknlcm_yn=lcm_ylcmn
10 simprr 0yz0n0zyyFinnkk
11 simp2 zyyFiny
12 snssi zz
13 12 3ad2ant1 zyyFinz
14 11 13 unssd zyyFinyz
15 simp3 zyyFinyFin
16 snfi zFin
17 unfi yFinzFinyzFin
18 15 16 17 sylancl zyyFinyzFin
19 14 18 jca zyyFinyzyzFin
20 lcmfcl yzyzFinlcm_yz0
21 19 20 syl zyyFinlcm_yz0
22 21 nn0zd zyyFinlcm_yz
23 22 adantl 0yz0n0zyyFinlcm_yz
24 23 adantr 0yz0n0zyyFinnklcm_yz
25 simprl 0yz0n0zyyFinnkn
26 10 24 25 3jca 0yz0n0zyyFinnkklcm_yzn
27 14 adantl 0yz0n0zyyFinyz
28 18 adantl 0yz0n0zyyFinyzFin
29 df-nel 0y¬0y
30 29 biimpi 0y¬0y
31 elsni 0z0=z
32 31 eqcomd 0zz=0
33 32 necon3ai z0¬0z
34 30 33 anim12i 0yz0¬0y¬0z
35 34 3adant3 0yz0n0¬0y¬0z
36 df-nel 0yz¬0yz
37 ioran ¬0y0z¬0y¬0z
38 elun 0yz0y0z
39 37 38 xchnxbir ¬0yz¬0y¬0z
40 36 39 bitri 0yz¬0y¬0z
41 35 40 sylibr 0yz0n00yz
42 41 adantr 0yz0n0zyyFin0yz
43 27 28 42 3jca 0yz0n0zyyFinyzyzFin0yz
44 43 adantr 0yz0n0zyyFinnkyzyzFin0yz
45 lcmfn0cl yzyzFin0yzlcm_yz
46 44 45 syl 0yz0n0zyyFinnklcm_yz
47 46 nnne0d 0yz0n0zyyFinnklcm_yz0
48 47 neneqd 0yz0n0zyyFinnk¬lcm_yz=0
49 neneq n0¬n=0
50 49 3ad2ant3 0yz0n0¬n=0
51 50 ad2antrr 0yz0n0zyyFinnk¬n=0
52 48 51 jca 0yz0n0zyyFinnk¬lcm_yz=0¬n=0
53 ioran ¬lcm_yz=0n=0¬lcm_yz=0¬n=0
54 52 53 sylibr 0yz0n0zyyFinnk¬lcm_yz=0n=0
55 26 54 jca 0yz0n0zyyFinnkklcm_yzn¬lcm_yz=0n=0
56 55 exp43 0yz0n0zyyFinnkklcm_yzn¬lcm_yz=0n=0
57 56 adantrd 0yz0n0zyyFinkmymklcm_yknlcm_yn=lcm_ylcmnnkklcm_yzn¬lcm_yz=0n=0
58 57 com23 0yz0n0nzyyFinkmymklcm_yknlcm_yn=lcm_ylcmnkklcm_yzn¬lcm_yz=0n=0
59 58 imp32 0yz0n0nzyyFinkmymklcm_yknlcm_yn=lcm_ylcmnkklcm_yzn¬lcm_yz=0n=0
60 59 imp 0yz0n0nzyyFinkmymklcm_yknlcm_yn=lcm_ylcmnkklcm_yzn¬lcm_yz=0n=0
61 60 adantr 0yz0n0nzyyFinkmymklcm_yknlcm_yn=lcm_ylcmnkiyznikklcm_yzn¬lcm_yz=0n=0
62 sneq n=zn=z
63 62 uneq2d n=zyn=yz
64 63 fveq2d n=zlcm_yn=lcm_yz
65 oveq2 n=zlcm_ylcmn=lcm_ylcmz
66 64 65 eqeq12d n=zlcm_yn=lcm_ylcmnlcm_yz=lcm_ylcmz
67 66 rspcv znlcm_yn=lcm_ylcmnlcm_yz=lcm_ylcmz
68 67 3ad2ant1 zyyFinnlcm_yn=lcm_ylcmnlcm_yz=lcm_ylcmz
69 nnz kk
70 69 adantl nkk
71 70 adantl zyyFinkmymklcm_yknkk
72 lcmfcl yyFinlcm_y0
73 72 nn0zd yyFinlcm_y
74 73 3adant1 zyyFinlcm_y
75 74 ad2antrr zyyFinkmymklcm_yknklcm_y
76 simpll1 zyyFinkmymklcm_yknkz
77 71 75 76 3jca zyyFinkmymklcm_yknkklcm_yz
78 77 ad2antrr zyyFinkmymklcm_yknk0yz0n0iyznikklcm_yz
79 elun1 mymyz
80 79 orcd mymyzmn
81 elun myznmyzmn
82 80 81 sylibr mymyzn
83 breq1 i=mikmk
84 83 rspcv myzniyznikmk
85 82 84 syl myiyznikmk
86 85 com12 iyznikmymk
87 86 adantl zyyFiniyznikmymk
88 87 ralrimiv zyyFiniyznikmymk
89 88 adantr zyyFiniyzniknk0yz0n0mymk
90 breq2 k=lmkml
91 90 ralbidv k=lmymkmyml
92 breq2 k=llcm_yklcm_yl
93 91 92 imbi12d k=lmymklcm_ykmymllcm_yl
94 93 cbvralvw kmymklcm_yklmymllcm_yl
95 70 adantr nk0yz0n0k
96 95 adantl zyyFiniyzniknk0yz0n0k
97 breq2 l=kmlmk
98 97 ralbidv l=kmymlmymk
99 breq2 l=klcm_yllcm_yk
100 98 99 imbi12d l=kmymllcm_ylmymklcm_yk
101 100 rspcv klmymllcm_ylmymklcm_yk
102 96 101 syl zyyFiniyzniknk0yz0n0lmymllcm_ylmymklcm_yk
103 94 102 biimtrid zyyFiniyzniknk0yz0n0kmymklcm_ykmymklcm_yk
104 89 103 mpid zyyFiniyzniknk0yz0n0kmymklcm_yklcm_yk
105 104 exp31 zyyFiniyzniknk0yz0n0kmymklcm_yklcm_yk
106 105 com24 zyyFinkmymklcm_yknk0yz0n0iyzniklcm_yk
107 106 imp zyyFinkmymklcm_yknk0yz0n0iyzniklcm_yk
108 107 impl zyyFinkmymklcm_yknk0yz0n0iyzniklcm_yk
109 108 imp zyyFinkmymklcm_yknk0yz0n0iyzniklcm_yk
110 vsnid zz
111 110 olci zyzz
112 elun zyzzyzz
113 111 112 mpbir zyz
114 113 orci zyzzn
115 elun zyznzyzzn
116 114 115 mpbir zyzn
117 breq1 i=zikzk
118 117 rspcv zyzniyznikzk
119 116 118 mp1i zyyFinkmymklcm_yknk0yz0n0iyznikzk
120 119 imp zyyFinkmymklcm_yknk0yz0n0iyznikzk
121 109 120 jca zyyFinkmymklcm_yknk0yz0n0iyzniklcm_ykzk
122 lcmdvds klcm_yzlcm_ykzklcm_ylcmzk
123 78 121 122 sylc zyyFinkmymklcm_yknk0yz0n0iyzniklcm_ylcmzk
124 breq1 lcm_yz=lcm_ylcmzlcm_yzklcm_ylcmzk
125 123 124 imbitrrid lcm_yz=lcm_ylcmzzyyFinkmymklcm_yknk0yz0n0iyzniklcm_yzk
126 125 expd lcm_yz=lcm_ylcmzzyyFinkmymklcm_yknk0yz0n0iyzniklcm_yzk
127 126 exp5j lcm_yz=lcm_ylcmzzyyFinkmymklcm_yknk0yz0n0iyzniklcm_yzk
128 127 com12 zyyFinlcm_yz=lcm_ylcmzkmymklcm_yknk0yz0n0iyzniklcm_yzk
129 68 128 syld zyyFinnlcm_yn=lcm_ylcmnkmymklcm_yknk0yz0n0iyzniklcm_yzk
130 129 com23 zyyFinkmymklcm_yknlcm_yn=lcm_ylcmnnk0yz0n0iyzniklcm_yzk
131 130 imp32 zyyFinkmymklcm_yknlcm_yn=lcm_ylcmnnk0yz0n0iyzniklcm_yzk
132 131 expd zyyFinkmymklcm_yknlcm_yn=lcm_ylcmnnk0yz0n0iyzniklcm_yzk
133 132 com34 zyyFinkmymklcm_yknlcm_yn=lcm_ylcmnn0yz0n0kiyzniklcm_yzk
134 133 com12 nzyyFinkmymklcm_yknlcm_yn=lcm_ylcmn0yz0n0kiyzniklcm_yzk
135 134 imp nzyyFinkmymklcm_yknlcm_yn=lcm_ylcmn0yz0n0kiyzniklcm_yzk
136 135 com12 0yz0n0nzyyFinkmymklcm_yknlcm_yn=lcm_ylcmnkiyzniklcm_yzk
137 136 imp 0yz0n0nzyyFinkmymklcm_yknlcm_yn=lcm_ylcmnkiyzniklcm_yzk
138 137 imp 0yz0n0nzyyFinkmymklcm_yknlcm_yn=lcm_ylcmnkiyzniklcm_yzk
139 138 imp 0yz0n0nzyyFinkmymklcm_yknlcm_yn=lcm_ylcmnkiyzniklcm_yzk
140 vsnid nn
141 140 olci nyznn
142 elun nyznnyznn
143 141 142 mpbir nyzn
144 breq1 i=niknk
145 144 rspcv nyzniyzniknk
146 143 145 mp1i 0yz0n0nzyyFinkmymklcm_yknlcm_yn=lcm_ylcmnkiyzniknk
147 146 imp 0yz0n0nzyyFinkmymklcm_yknlcm_yn=lcm_ylcmnkiyzniknk
148 139 147 jca 0yz0n0nzyyFinkmymklcm_yknlcm_yn=lcm_ylcmnkiyzniklcm_yzknk
149 lcmledvds klcm_yzn¬lcm_yz=0n=0lcm_yzknklcm_yzlcmnk
150 61 148 149 sylc 0yz0n0nzyyFinkmymklcm_yknlcm_yn=lcm_ylcmnkiyzniklcm_yzlcmnk
151 150 exp31 0yz0n0nzyyFinkmymklcm_yknlcm_yn=lcm_ylcmnkiyzniklcm_yzlcmnk
152 9 151 ralrimi 0yz0n0nzyyFinkmymklcm_yknlcm_yn=lcm_ylcmnkiyzniklcm_yzlcmnk