| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lfl1dim.v |  | 
						
							| 2 |  | lfl1dim.d |  | 
						
							| 3 |  | lfl1dim.f |  | 
						
							| 4 |  | lfl1dim.l |  | 
						
							| 5 |  | lfl1dim.k |  | 
						
							| 6 |  | lfl1dim.t |  | 
						
							| 7 |  | lfl1dim.w |  | 
						
							| 8 |  | lfl1dim.g |  | 
						
							| 9 |  | df-rab |  | 
						
							| 10 |  | lveclmod |  | 
						
							| 11 | 7 10 | syl |  | 
						
							| 12 |  | eqid |  | 
						
							| 13 | 2 5 12 | lmod0cl |  | 
						
							| 14 | 11 13 | syl |  | 
						
							| 15 | 14 | ad2antrr |  | 
						
							| 16 |  | simpr |  | 
						
							| 17 | 11 | ad2antrr |  | 
						
							| 18 | 8 | ad2antrr |  | 
						
							| 19 | 1 2 3 5 6 12 17 18 | lfl0sc |  | 
						
							| 20 | 16 19 | eqtr4d |  | 
						
							| 21 |  | sneq |  | 
						
							| 22 | 21 | xpeq2d |  | 
						
							| 23 | 22 | oveq2d |  | 
						
							| 24 | 23 | rspceeqv |  | 
						
							| 25 | 15 20 24 | syl2anc |  | 
						
							| 26 | 25 | a1d |  | 
						
							| 27 | 14 | ad3antrrr |  | 
						
							| 28 | 11 | ad3antrrr |  | 
						
							| 29 |  | simpllr |  | 
						
							| 30 | 1 3 4 28 29 | lkrssv |  | 
						
							| 31 | 11 | adantr |  | 
						
							| 32 | 8 | adantr |  | 
						
							| 33 | 2 12 1 3 4 | lkr0f |  | 
						
							| 34 | 31 32 33 | syl2anc |  | 
						
							| 35 | 34 | biimpar |  | 
						
							| 36 | 35 | sseq1d |  | 
						
							| 37 | 36 | biimpa |  | 
						
							| 38 | 30 37 | eqssd |  | 
						
							| 39 | 2 12 1 3 4 | lkr0f |  | 
						
							| 40 | 28 29 39 | syl2anc |  | 
						
							| 41 | 38 40 | mpbid |  | 
						
							| 42 | 8 | ad3antrrr |  | 
						
							| 43 | 1 2 3 5 6 12 28 42 | lfl0sc |  | 
						
							| 44 | 41 43 | eqtr4d |  | 
						
							| 45 | 27 44 24 | syl2anc |  | 
						
							| 46 | 45 | ex |  | 
						
							| 47 |  | eqid |  | 
						
							| 48 | 7 | ad2antrr |  | 
						
							| 49 | 8 | ad2antrr |  | 
						
							| 50 |  | simprr |  | 
						
							| 51 | 1 2 12 47 3 4 | lkrshp |  | 
						
							| 52 | 48 49 50 51 | syl3anc |  | 
						
							| 53 |  | simplr |  | 
						
							| 54 |  | simprl |  | 
						
							| 55 | 1 2 12 47 3 4 | lkrshp |  | 
						
							| 56 | 48 53 54 55 | syl3anc |  | 
						
							| 57 | 47 48 52 56 | lshpcmp |  | 
						
							| 58 | 7 | ad3antrrr |  | 
						
							| 59 | 8 | ad3antrrr |  | 
						
							| 60 |  | simpllr |  | 
						
							| 61 |  | simpr |  | 
						
							| 62 | 2 5 6 1 3 4 | eqlkr2 |  | 
						
							| 63 | 58 59 60 61 62 | syl121anc |  | 
						
							| 64 | 63 | ex |  | 
						
							| 65 | 57 64 | sylbid |  | 
						
							| 66 | 26 46 65 | pm2.61da2ne |  | 
						
							| 67 | 7 | ad2antrr |  | 
						
							| 68 | 8 | ad2antrr |  | 
						
							| 69 |  | simpr |  | 
						
							| 70 | 1 2 5 6 3 4 67 68 69 | lkrscss |  | 
						
							| 71 | 70 | ex |  | 
						
							| 72 |  | fveq2 |  | 
						
							| 73 | 72 | sseq2d |  | 
						
							| 74 | 73 | biimprcd |  | 
						
							| 75 | 71 74 | syl6 |  | 
						
							| 76 | 75 | rexlimdv |  | 
						
							| 77 | 66 76 | impbid |  | 
						
							| 78 | 77 | pm5.32da |  | 
						
							| 79 | 11 | adantr |  | 
						
							| 80 | 8 | adantr |  | 
						
							| 81 |  | simpr |  | 
						
							| 82 | 1 2 5 6 3 79 80 81 | lflvscl |  | 
						
							| 83 |  | eleq1a |  | 
						
							| 84 | 82 83 | syl |  | 
						
							| 85 | 84 | pm4.71rd |  | 
						
							| 86 | 85 | rexbidva |  | 
						
							| 87 |  | r19.42v |  | 
						
							| 88 | 86 87 | bitr2di |  | 
						
							| 89 | 78 88 | bitrd |  | 
						
							| 90 | 89 | abbidv |  | 
						
							| 91 | 9 90 | eqtrid |  |