Database
BASIC REAL AND COMPLEX FUNCTIONS
Basic number theory
Quadratic residues and the Legendre symbol
lgsdir2lem4
Next ⟩
lgsdir2lem5
Metamath Proof Explorer
Ascii
Unicode
Theorem
lgsdir2lem4
Description:
Lemma for
lgsdir2
.
(Contributed by
Mario Carneiro
, 4-Feb-2015)
Ref
Expression
Assertion
lgsdir2lem4
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
A
mod
8
∈
1
7
→
A
B
mod
8
∈
1
7
↔
B
mod
8
∈
1
7
Proof
Step
Hyp
Ref
Expression
1
ovex
⊢
A
mod
8
∈
V
2
1
elpr
⊢
A
mod
8
∈
1
7
↔
A
mod
8
=
1
∨
A
mod
8
=
7
3
zre
⊢
A
∈
ℤ
→
A
∈
ℝ
4
3
ad2antrr
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
A
mod
8
=
1
→
A
∈
ℝ
5
1red
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
A
mod
8
=
1
→
1
∈
ℝ
6
simplr
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
A
mod
8
=
1
→
B
∈
ℤ
7
8re
⊢
8
∈
ℝ
8
8pos
⊢
0
<
8
9
7
8
elrpii
⊢
8
∈
ℝ
+
10
9
a1i
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
A
mod
8
=
1
→
8
∈
ℝ
+
11
simpr
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
A
mod
8
=
1
→
A
mod
8
=
1
12
lgsdir2lem1
⊢
1
mod
8
=
1
∧
-1
mod
8
=
7
∧
3
mod
8
=
3
∧
-3
mod
8
=
5
13
12
simpli
⊢
1
mod
8
=
1
∧
-1
mod
8
=
7
14
13
simpli
⊢
1
mod
8
=
1
15
11
14
eqtr4di
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
A
mod
8
=
1
→
A
mod
8
=
1
mod
8
16
modmul1
⊢
A
∈
ℝ
∧
1
∈
ℝ
∧
B
∈
ℤ
∧
8
∈
ℝ
+
∧
A
mod
8
=
1
mod
8
→
A
B
mod
8
=
1
B
mod
8
17
4
5
6
10
15
16
syl221anc
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
A
mod
8
=
1
→
A
B
mod
8
=
1
B
mod
8
18
zcn
⊢
B
∈
ℤ
→
B
∈
ℂ
19
18
ad2antlr
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
A
mod
8
=
1
→
B
∈
ℂ
20
19
mullidd
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
A
mod
8
=
1
→
1
B
=
B
21
20
oveq1d
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
A
mod
8
=
1
→
1
B
mod
8
=
B
mod
8
22
17
21
eqtrd
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
A
mod
8
=
1
→
A
B
mod
8
=
B
mod
8
23
22
eleq1d
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
A
mod
8
=
1
→
A
B
mod
8
∈
1
7
↔
B
mod
8
∈
1
7
24
3
ad2antrr
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
A
mod
8
=
7
→
A
∈
ℝ
25
neg1rr
⊢
−
1
∈
ℝ
26
25
a1i
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
A
mod
8
=
7
→
−
1
∈
ℝ
27
simplr
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
A
mod
8
=
7
→
B
∈
ℤ
28
9
a1i
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
A
mod
8
=
7
→
8
∈
ℝ
+
29
simpr
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
A
mod
8
=
7
→
A
mod
8
=
7
30
13
simpri
⊢
-1
mod
8
=
7
31
29
30
eqtr4di
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
A
mod
8
=
7
→
A
mod
8
=
-1
mod
8
32
modmul1
⊢
A
∈
ℝ
∧
−
1
∈
ℝ
∧
B
∈
ℤ
∧
8
∈
ℝ
+
∧
A
mod
8
=
-1
mod
8
→
A
B
mod
8
=
-1
B
mod
8
33
24
26
27
28
31
32
syl221anc
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
A
mod
8
=
7
→
A
B
mod
8
=
-1
B
mod
8
34
18
ad2antlr
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
A
mod
8
=
7
→
B
∈
ℂ
35
34
mulm1d
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
A
mod
8
=
7
→
-1
B
=
−
B
36
35
oveq1d
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
A
mod
8
=
7
→
-1
B
mod
8
=
−
B
mod
8
37
33
36
eqtrd
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
A
mod
8
=
7
→
A
B
mod
8
=
−
B
mod
8
38
37
eleq1d
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
A
mod
8
=
7
→
A
B
mod
8
∈
1
7
↔
−
B
mod
8
∈
1
7
39
znegcl
⊢
B
∈
ℤ
→
−
B
∈
ℤ
40
oveq1
⊢
x
=
−
B
→
x
mod
8
=
−
B
mod
8
41
40
eleq1d
⊢
x
=
−
B
→
x
mod
8
∈
1
7
↔
−
B
mod
8
∈
1
7
42
negeq
⊢
x
=
−
B
→
−
x
=
−
−
B
43
42
oveq1d
⊢
x
=
−
B
→
−
x
mod
8
=
−
−
B
mod
8
44
43
eleq1d
⊢
x
=
−
B
→
−
x
mod
8
∈
1
7
↔
−
−
B
mod
8
∈
1
7
45
41
44
imbi12d
⊢
x
=
−
B
→
x
mod
8
∈
1
7
→
−
x
mod
8
∈
1
7
↔
−
B
mod
8
∈
1
7
→
−
−
B
mod
8
∈
1
7
46
zcn
⊢
x
∈
ℤ
→
x
∈
ℂ
47
neg1cn
⊢
−
1
∈
ℂ
48
mulcom
⊢
x
∈
ℂ
∧
−
1
∈
ℂ
→
x
-1
=
-1
x
49
47
48
mpan2
⊢
x
∈
ℂ
→
x
-1
=
-1
x
50
mulm1
⊢
x
∈
ℂ
→
-1
x
=
−
x
51
49
50
eqtrd
⊢
x
∈
ℂ
→
x
-1
=
−
x
52
46
51
syl
⊢
x
∈
ℤ
→
x
-1
=
−
x
53
52
adantr
⊢
x
∈
ℤ
∧
x
mod
8
=
1
→
x
-1
=
−
x
54
53
oveq1d
⊢
x
∈
ℤ
∧
x
mod
8
=
1
→
x
-1
mod
8
=
−
x
mod
8
55
zre
⊢
x
∈
ℤ
→
x
∈
ℝ
56
55
adantr
⊢
x
∈
ℤ
∧
x
mod
8
=
1
→
x
∈
ℝ
57
1red
⊢
x
∈
ℤ
∧
x
mod
8
=
1
→
1
∈
ℝ
58
neg1z
⊢
−
1
∈
ℤ
59
58
a1i
⊢
x
∈
ℤ
∧
x
mod
8
=
1
→
−
1
∈
ℤ
60
9
a1i
⊢
x
∈
ℤ
∧
x
mod
8
=
1
→
8
∈
ℝ
+
61
simpr
⊢
x
∈
ℤ
∧
x
mod
8
=
1
→
x
mod
8
=
1
62
61
14
eqtr4di
⊢
x
∈
ℤ
∧
x
mod
8
=
1
→
x
mod
8
=
1
mod
8
63
modmul1
⊢
x
∈
ℝ
∧
1
∈
ℝ
∧
−
1
∈
ℤ
∧
8
∈
ℝ
+
∧
x
mod
8
=
1
mod
8
→
x
-1
mod
8
=
1
-1
mod
8
64
56
57
59
60
62
63
syl221anc
⊢
x
∈
ℤ
∧
x
mod
8
=
1
→
x
-1
mod
8
=
1
-1
mod
8
65
54
64
eqtr3d
⊢
x
∈
ℤ
∧
x
mod
8
=
1
→
−
x
mod
8
=
1
-1
mod
8
66
47
mullidi
⊢
1
-1
=
−
1
67
66
oveq1i
⊢
1
-1
mod
8
=
-1
mod
8
68
67
30
eqtri
⊢
1
-1
mod
8
=
7
69
65
68
eqtrdi
⊢
x
∈
ℤ
∧
x
mod
8
=
1
→
−
x
mod
8
=
7
70
69
ex
⊢
x
∈
ℤ
→
x
mod
8
=
1
→
−
x
mod
8
=
7
71
52
adantr
⊢
x
∈
ℤ
∧
x
mod
8
=
7
→
x
-1
=
−
x
72
71
oveq1d
⊢
x
∈
ℤ
∧
x
mod
8
=
7
→
x
-1
mod
8
=
−
x
mod
8
73
55
adantr
⊢
x
∈
ℤ
∧
x
mod
8
=
7
→
x
∈
ℝ
74
25
a1i
⊢
x
∈
ℤ
∧
x
mod
8
=
7
→
−
1
∈
ℝ
75
58
a1i
⊢
x
∈
ℤ
∧
x
mod
8
=
7
→
−
1
∈
ℤ
76
9
a1i
⊢
x
∈
ℤ
∧
x
mod
8
=
7
→
8
∈
ℝ
+
77
simpr
⊢
x
∈
ℤ
∧
x
mod
8
=
7
→
x
mod
8
=
7
78
77
30
eqtr4di
⊢
x
∈
ℤ
∧
x
mod
8
=
7
→
x
mod
8
=
-1
mod
8
79
modmul1
⊢
x
∈
ℝ
∧
−
1
∈
ℝ
∧
−
1
∈
ℤ
∧
8
∈
ℝ
+
∧
x
mod
8
=
-1
mod
8
→
x
-1
mod
8
=
-1
-1
mod
8
80
73
74
75
76
78
79
syl221anc
⊢
x
∈
ℤ
∧
x
mod
8
=
7
→
x
-1
mod
8
=
-1
-1
mod
8
81
72
80
eqtr3d
⊢
x
∈
ℤ
∧
x
mod
8
=
7
→
−
x
mod
8
=
-1
-1
mod
8
82
neg1mulneg1e1
⊢
-1
-1
=
1
83
82
oveq1i
⊢
-1
-1
mod
8
=
1
mod
8
84
83
14
eqtri
⊢
-1
-1
mod
8
=
1
85
81
84
eqtrdi
⊢
x
∈
ℤ
∧
x
mod
8
=
7
→
−
x
mod
8
=
1
86
85
ex
⊢
x
∈
ℤ
→
x
mod
8
=
7
→
−
x
mod
8
=
1
87
70
86
orim12d
⊢
x
∈
ℤ
→
x
mod
8
=
1
∨
x
mod
8
=
7
→
−
x
mod
8
=
7
∨
−
x
mod
8
=
1
88
ovex
⊢
x
mod
8
∈
V
89
88
elpr
⊢
x
mod
8
∈
1
7
↔
x
mod
8
=
1
∨
x
mod
8
=
7
90
ovex
⊢
−
x
mod
8
∈
V
91
90
elpr
⊢
−
x
mod
8
∈
1
7
↔
−
x
mod
8
=
1
∨
−
x
mod
8
=
7
92
orcom
⊢
−
x
mod
8
=
1
∨
−
x
mod
8
=
7
↔
−
x
mod
8
=
7
∨
−
x
mod
8
=
1
93
91
92
bitri
⊢
−
x
mod
8
∈
1
7
↔
−
x
mod
8
=
7
∨
−
x
mod
8
=
1
94
87
89
93
3imtr4g
⊢
x
∈
ℤ
→
x
mod
8
∈
1
7
→
−
x
mod
8
∈
1
7
95
45
94
vtoclga
⊢
−
B
∈
ℤ
→
−
B
mod
8
∈
1
7
→
−
−
B
mod
8
∈
1
7
96
39
95
syl
⊢
B
∈
ℤ
→
−
B
mod
8
∈
1
7
→
−
−
B
mod
8
∈
1
7
97
18
negnegd
⊢
B
∈
ℤ
→
−
−
B
=
B
98
97
oveq1d
⊢
B
∈
ℤ
→
−
−
B
mod
8
=
B
mod
8
99
98
eleq1d
⊢
B
∈
ℤ
→
−
−
B
mod
8
∈
1
7
↔
B
mod
8
∈
1
7
100
96
99
sylibd
⊢
B
∈
ℤ
→
−
B
mod
8
∈
1
7
→
B
mod
8
∈
1
7
101
oveq1
⊢
x
=
B
→
x
mod
8
=
B
mod
8
102
101
eleq1d
⊢
x
=
B
→
x
mod
8
∈
1
7
↔
B
mod
8
∈
1
7
103
negeq
⊢
x
=
B
→
−
x
=
−
B
104
103
oveq1d
⊢
x
=
B
→
−
x
mod
8
=
−
B
mod
8
105
104
eleq1d
⊢
x
=
B
→
−
x
mod
8
∈
1
7
↔
−
B
mod
8
∈
1
7
106
102
105
imbi12d
⊢
x
=
B
→
x
mod
8
∈
1
7
→
−
x
mod
8
∈
1
7
↔
B
mod
8
∈
1
7
→
−
B
mod
8
∈
1
7
107
106
94
vtoclga
⊢
B
∈
ℤ
→
B
mod
8
∈
1
7
→
−
B
mod
8
∈
1
7
108
100
107
impbid
⊢
B
∈
ℤ
→
−
B
mod
8
∈
1
7
↔
B
mod
8
∈
1
7
109
108
ad2antlr
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
A
mod
8
=
7
→
−
B
mod
8
∈
1
7
↔
B
mod
8
∈
1
7
110
38
109
bitrd
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
A
mod
8
=
7
→
A
B
mod
8
∈
1
7
↔
B
mod
8
∈
1
7
111
23
110
jaodan
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
A
mod
8
=
1
∨
A
mod
8
=
7
→
A
B
mod
8
∈
1
7
↔
B
mod
8
∈
1
7
112
2
111
sylan2b
⊢
A
∈
ℤ
∧
B
∈
ℤ
∧
A
mod
8
∈
1
7
→
A
B
mod
8
∈
1
7
↔
B
mod
8
∈
1
7