Step |
Hyp |
Ref |
Expression |
1 |
|
eldifi |
|
2 |
1
|
3ad2ant2 |
|
3 |
|
prmnn |
|
4 |
2 3
|
syl |
|
5 |
|
simp1 |
|
6 |
|
prmz |
|
7 |
2 6
|
syl |
|
8 |
5 7
|
gcdcomd |
|
9 |
|
simp3 |
|
10 |
|
coprm |
|
11 |
2 5 10
|
syl2anc |
|
12 |
9 11
|
mpbid |
|
13 |
8 12
|
eqtrd |
|
14 |
|
eulerth |
|
15 |
4 5 13 14
|
syl3anc |
|
16 |
|
phiprm |
|
17 |
2 16
|
syl |
|
18 |
|
nnm1nn0 |
|
19 |
4 18
|
syl |
|
20 |
17 19
|
eqeltrd |
|
21 |
|
zexpcl |
|
22 |
5 20 21
|
syl2anc |
|
23 |
|
1zzd |
|
24 |
|
moddvds |
|
25 |
4 22 23 24
|
syl3anc |
|
26 |
15 25
|
mpbid |
|
27 |
19
|
nn0cnd |
|
28 |
|
2cnd |
|
29 |
|
2ne0 |
|
30 |
29
|
a1i |
|
31 |
27 28 30
|
divcan1d |
|
32 |
17 31
|
eqtr4d |
|
33 |
32
|
oveq2d |
|
34 |
5
|
zcnd |
|
35 |
|
2nn0 |
|
36 |
35
|
a1i |
|
37 |
|
oddprm |
|
38 |
37
|
3ad2ant2 |
|
39 |
38
|
nnnn0d |
|
40 |
34 36 39
|
expmuld |
|
41 |
33 40
|
eqtrd |
|
42 |
41
|
oveq1d |
|
43 |
|
sq1 |
|
44 |
43
|
oveq2i |
|
45 |
42 44
|
eqtr4di |
|
46 |
|
zexpcl |
|
47 |
5 39 46
|
syl2anc |
|
48 |
47
|
zcnd |
|
49 |
|
ax-1cn |
|
50 |
|
subsq |
|
51 |
48 49 50
|
sylancl |
|
52 |
45 51
|
eqtrd |
|
53 |
26 52
|
breqtrd |
|
54 |
47
|
peano2zd |
|
55 |
|
peano2zm |
|
56 |
47 55
|
syl |
|
57 |
|
euclemma |
|
58 |
2 54 56 57
|
syl3anc |
|
59 |
53 58
|
mpbid |
|
60 |
|
dvdsval3 |
|
61 |
4 54 60
|
syl2anc |
|
62 |
|
2z |
|
63 |
62
|
a1i |
|
64 |
|
moddvds |
|
65 |
4 54 63 64
|
syl3anc |
|
66 |
|
2re |
|
67 |
66
|
a1i |
|
68 |
4
|
nnrpd |
|
69 |
|
0le2 |
|
70 |
69
|
a1i |
|
71 |
4
|
nnred |
|
72 |
|
prmuz2 |
|
73 |
2 72
|
syl |
|
74 |
|
eluzle |
|
75 |
73 74
|
syl |
|
76 |
|
eldifsni |
|
77 |
76
|
3ad2ant2 |
|
78 |
67 71 75 77
|
leneltd |
|
79 |
|
modid |
|
80 |
67 68 70 78 79
|
syl22anc |
|
81 |
80
|
eqeq2d |
|
82 |
|
df-2 |
|
83 |
82
|
oveq2i |
|
84 |
49
|
a1i |
|
85 |
48 84 84
|
pnpcan2d |
|
86 |
83 85
|
eqtrid |
|
87 |
86
|
breq2d |
|
88 |
65 81 87
|
3bitr3rd |
|
89 |
61 88
|
orbi12d |
|
90 |
59 89
|
mpbid |
|
91 |
|
ovex |
|
92 |
91
|
elpr |
|
93 |
90 92
|
sylibr |
|