Metamath Proof Explorer


Theorem limccnp

Description: If the limit of F at B is C and G is continuous at C , then the limit of G o. F at B is G ( C ) . (Contributed by Mario Carneiro, 28-Dec-2016)

Ref Expression
Hypotheses limccnp.f φF:AD
limccnp.d φD
limccnp.k K=TopOpenfld
limccnp.j J=K𝑡D
limccnp.c φCFlimB
limccnp.b φGJCnPKC
Assertion limccnp φGCGFlimB

Proof

Step Hyp Ref Expression
1 limccnp.f φF:AD
2 limccnp.d φD
3 limccnp.k K=TopOpenfld
4 limccnp.j J=K𝑡D
5 limccnp.c φCFlimB
6 limccnp.b φGJCnPKC
7 3 cnfldtopon KTopOn
8 resttopon KTopOnDK𝑡DTopOnD
9 7 2 8 sylancr φK𝑡DTopOnD
10 4 9 eqeltrid φJTopOnD
11 7 a1i φKTopOn
12 cnpf2 JTopOnDKTopOnGJCnPKCG:D
13 10 11 6 12 syl3anc φG:D
14 eqid J=J
15 14 cnprcl GJCnPKCCJ
16 6 15 syl φCJ
17 toponuni JTopOnDD=J
18 10 17 syl φD=J
19 16 18 eleqtrrd φCD
20 19 ad2antrr φxABx=BCD
21 1 ad2antrr φxAB¬x=BF:AD
22 elun xABxAxB
23 elsni xBx=B
24 23 orim2i xAxBxAx=B
25 22 24 sylbi xABxAx=B
26 25 adantl φxABxAx=B
27 26 orcomd φxABx=BxA
28 27 orcanai φxAB¬x=BxA
29 21 28 ffvelcdmd φxAB¬x=BFxD
30 20 29 ifclda φxABifx=BCFxD
31 13 30 cofmpt φGxABifx=BCFx=xABGifx=BCFx
32 fvco3 F:ADxAGFx=GFx
33 21 28 32 syl2anc φxAB¬x=BGFx=GFx
34 33 ifeq2da φxABifx=BGCGFx=ifx=BGCGFx
35 fvif Gifx=BCFx=ifx=BGCGFx
36 34 35 eqtr4di φxABifx=BGCGFx=Gifx=BCFx
37 36 mpteq2dva φxABifx=BGCGFx=xABGifx=BCFx
38 31 37 eqtr4d φGxABifx=BCFx=xABifx=BGCGFx
39 eqid K𝑡AB=K𝑡AB
40 eqid xABifx=BCFx=xABifx=BCFx
41 1 2 fssd φF:A
42 1 fdmd φdomF=A
43 limcrcl CFlimBF:domFdomFB
44 5 43 syl φF:domFdomFB
45 44 simp2d φdomF
46 42 45 eqsstrrd φA
47 44 simp3d φB
48 39 3 40 41 46 47 ellimc φCFlimBxABifx=BCFxK𝑡ABCnPKB
49 5 48 mpbid φxABifx=BCFxK𝑡ABCnPKB
50 3 cnfldtop KTop
51 50 a1i φKTop
52 30 fmpttd φxABifx=BCFx:ABD
53 47 snssd φB
54 46 53 unssd φAB
55 resttopon KTopOnABK𝑡ABTopOnAB
56 7 54 55 sylancr φK𝑡ABTopOnAB
57 toponuni K𝑡ABTopOnABAB=K𝑡AB
58 56 57 syl φAB=K𝑡AB
59 58 feq2d φxABifx=BCFx:ABDxABifx=BCFx:K𝑡ABD
60 52 59 mpbid φxABifx=BCFx:K𝑡ABD
61 eqid K𝑡AB=K𝑡AB
62 7 toponunii =K
63 61 62 cnprest2 KTopxABifx=BCFx:K𝑡ABDDxABifx=BCFxK𝑡ABCnPKBxABifx=BCFxK𝑡ABCnPK𝑡DB
64 51 60 2 63 syl3anc φxABifx=BCFxK𝑡ABCnPKBxABifx=BCFxK𝑡ABCnPK𝑡DB
65 49 64 mpbid φxABifx=BCFxK𝑡ABCnPK𝑡DB
66 4 oveq2i K𝑡ABCnPJ=K𝑡ABCnPK𝑡D
67 66 fveq1i K𝑡ABCnPJB=K𝑡ABCnPK𝑡DB
68 65 67 eleqtrrdi φxABifx=BCFxK𝑡ABCnPJB
69 iftrue x=Bifx=BCFx=C
70 ssun2 BAB
71 snssg BBABBAB
72 47 71 syl φBABBAB
73 70 72 mpbiri φBAB
74 40 69 73 5 fvmptd3 φxABifx=BCFxB=C
75 74 fveq2d φJCnPKxABifx=BCFxB=JCnPKC
76 6 75 eleqtrrd φGJCnPKxABifx=BCFxB
77 cnpco xABifx=BCFxK𝑡ABCnPJBGJCnPKxABifx=BCFxBGxABifx=BCFxK𝑡ABCnPKB
78 68 76 77 syl2anc φGxABifx=BCFxK𝑡ABCnPKB
79 38 78 eqeltrrd φxABifx=BGCGFxK𝑡ABCnPKB
80 eqid xABifx=BGCGFx=xABifx=BGCGFx
81 fco G:DF:ADGF:A
82 13 1 81 syl2anc φGF:A
83 39 3 80 82 46 47 ellimc φGCGFlimBxABifx=BGCGFxK𝑡ABCnPKB
84 79 83 mpbird φGCGFlimB