Metamath Proof Explorer


Theorem limcres

Description: If B is an interior point of C u. { B } relative to the domain A , then a limit point of ` F |`C extends to a limit of F . (Contributed by Mario Carneiro, 27-Dec-2016)

Ref Expression
Hypotheses limcres.f φF:A
limcres.c φCA
limcres.a φA
limcres.k K=TopOpenfld
limcres.j J=K𝑡AB
limcres.i φBintJCB
Assertion limcres φFClimB=FlimB

Proof

Step Hyp Ref Expression
1 limcres.f φF:A
2 limcres.c φCA
3 limcres.a φA
4 limcres.k K=TopOpenfld
5 limcres.j J=K𝑡AB
6 limcres.i φBintJCB
7 limcrcl xFClimBFC:domFCdomFCB
8 7 simp3d xFClimBB
9 limccl FClimB
10 9 sseli xFClimBx
11 8 10 jca xFClimBBx
12 11 a1i φxFClimBBx
13 limcrcl xFlimBF:domFdomFB
14 13 simp3d xFlimBB
15 limccl FlimB
16 15 sseli xFlimBx
17 14 16 jca xFlimBBx
18 17 a1i φxFlimBBx
19 4 cnfldtopon KTopOn
20 3 adantr φBxA
21 simprl φBxB
22 21 snssd φBxB
23 20 22 unssd φBxAB
24 resttopon KTopOnABK𝑡ABTopOnAB
25 19 23 24 sylancr φBxK𝑡ABTopOnAB
26 5 25 eqeltrid φBxJTopOnAB
27 topontop JTopOnABJTop
28 26 27 syl φBxJTop
29 2 adantr φBxCA
30 unss1 CACBAB
31 29 30 syl φBxCBAB
32 toponuni JTopOnABAB=J
33 26 32 syl φBxAB=J
34 31 33 sseqtrd φBxCBJ
35 6 adantr φBxBintJCB
36 elun zABzAzB
37 simplrr φBxzAx
38 1 adantr φBxF:A
39 38 ffvelcdmda φBxzAFz
40 37 39 ifcld φBxzAifz=BxFz
41 elsni zBz=B
42 41 adantl φBxzBz=B
43 42 iftrued φBxzBifz=BxFz=x
44 simplrr φBxzBx
45 43 44 eqeltrd φBxzBifz=BxFz
46 40 45 jaodan φBxzAzBifz=BxFz
47 36 46 sylan2b φBxzABifz=BxFz
48 47 fmpttd φBxzABifz=BxFz:AB
49 33 feq2d φBxzABifz=BxFz:ABzABifz=BxFz:J
50 48 49 mpbid φBxzABifz=BxFz:J
51 eqid J=J
52 19 toponunii =K
53 51 52 cnprest JTopCBJBintJCBzABifz=BxFz:JzABifz=BxFzJCnPKBzABifz=BxFzCBJ𝑡CBCnPKB
54 28 34 35 50 53 syl22anc φBxzABifz=BxFzJCnPKBzABifz=BxFzCBJ𝑡CBCnPKB
55 eqid zABifz=BxFz=zABifz=BxFz
56 5 4 55 38 20 21 ellimc φBxxFlimBzABifz=BxFzJCnPKB
57 eqid K𝑡CB=K𝑡CB
58 eqid zCBifz=BxFCz=zCBifz=BxFCz
59 38 29 fssresd φBxFC:C
60 29 20 sstrd φBxC
61 57 4 58 59 60 21 ellimc φBxxFClimBzCBifz=BxFCzK𝑡CBCnPKB
62 elun zCBzCzB
63 velsn zBz=B
64 63 orbi2i zCzBzCz=B
65 62 64 bitri zCBzCz=B
66 pm5.61 zCz=B¬z=BzC¬z=B
67 fvres zCFCz=Fz
68 67 adantr zC¬z=BFCz=Fz
69 66 68 sylbi zCz=B¬z=BFCz=Fz
70 69 ifeq2da zCz=Bifz=BxFCz=ifz=BxFz
71 65 70 sylbi zCBifz=BxFCz=ifz=BxFz
72 71 mpteq2ia zCBifz=BxFCz=zCBifz=BxFz
73 31 resmptd φBxzABifz=BxFzCB=zCBifz=BxFz
74 72 73 eqtr4id φBxzCBifz=BxFCz=zABifz=BxFzCB
75 5 oveq1i J𝑡CB=K𝑡AB𝑡CB
76 cnex V
77 76 ssex ABABV
78 23 77 syl φBxABV
79 restabs KTopOnCBABABVK𝑡AB𝑡CB=K𝑡CB
80 19 31 78 79 mp3an2i φBxK𝑡AB𝑡CB=K𝑡CB
81 75 80 eqtr2id φBxK𝑡CB=J𝑡CB
82 81 oveq1d φBxK𝑡CBCnPK=J𝑡CBCnPK
83 82 fveq1d φBxK𝑡CBCnPKB=J𝑡CBCnPKB
84 74 83 eleq12d φBxzCBifz=BxFCzK𝑡CBCnPKBzABifz=BxFzCBJ𝑡CBCnPKB
85 61 84 bitrd φBxxFClimBzABifz=BxFzCBJ𝑡CBCnPKB
86 54 56 85 3bitr4rd φBxxFClimBxFlimB
87 86 ex φBxxFClimBxFlimB
88 12 18 87 pm5.21ndd φxFClimBxFlimB
89 88 eqrdv φFClimB=FlimB