Metamath Proof Explorer


Theorem liminflelimsuplem

Description: The superior limit is greater than or equal to the inferior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses liminflelimsuplem.1 φFV
liminflelimsuplem.2 φkjk+∞Fj+∞*
Assertion liminflelimsuplem φlim infFlim supF

Proof

Step Hyp Ref Expression
1 liminflelimsuplem.1 φFV
2 liminflelimsuplem.2 φkjk+∞Fj+∞*
3 simpr ill
4 simpl ili
5 3 4 ifcld ilifilli
6 5 adantll φilifilli
7 2 ad2antrr φilkjk+∞Fj+∞*
8 oveq1 k=ifillik+∞=ifilli+∞
9 8 rexeqdv k=ifillijk+∞Fj+∞*jifilli+∞Fj+∞*
10 9 rspcva ifillikjk+∞Fj+∞*jifilli+∞Fj+∞*
11 6 7 10 syl2anc φiljifilli+∞Fj+∞*
12 inss2 Fi+∞**
13 infxrcl Fi+∞**supFi+∞**<*
14 12 13 ax-mp supFi+∞**<*
15 14 a1i iljifilli+∞Fj+∞*supFi+∞**<*
16 inss2 Fj+∞**
17 infxrcl Fj+∞**supFj+∞**<*
18 16 17 ax-mp supFj+∞**<*
19 18 a1i iljifilli+∞Fj+∞*supFj+∞**<*
20 inss2 Fl+∞**
21 supxrcl Fl+∞**supFl+∞**<*
22 20 21 ax-mp supFl+∞**<*
23 22 a1i iljifilli+∞Fj+∞*supFl+∞**<*
24 rexr ii*
25 24 ad2antrr iljifilli+∞i*
26 pnfxr +∞*
27 26 a1i iljifilli+∞+∞*
28 5 rexrd ilifilli*
29 28 adantr iljifilli+∞ifilli*
30 icossxr ifilli+∞*
31 id jifilli+∞jifilli+∞
32 30 31 sselid jifilli+∞j*
33 32 adantl iljifilli+∞j*
34 max1 iliifilli
35 34 adantr iljifilli+∞iifilli
36 simpr iljifilli+∞jifilli+∞
37 29 27 36 icogelbd iljifilli+∞ifillij
38 25 29 33 35 37 xrletrd iljifilli+∞ij
39 25 27 38 icossico2 iljifilli+∞j+∞i+∞
40 39 imass2d iljifilli+∞Fj+∞Fi+∞
41 40 ssrind iljifilli+∞Fj+∞*Fi+∞*
42 12 a1i iljifilli+∞Fi+∞**
43 infxrss Fj+∞*Fi+∞*Fi+∞**supFi+∞**<supFj+∞**<
44 41 42 43 syl2anc iljifilli+∞supFi+∞**<supFj+∞**<
45 44 adantr iljifilli+∞Fj+∞*supFi+∞**<supFj+∞**<
46 supxrcl Fj+∞**supFj+∞**<*
47 16 46 ax-mp supFj+∞**<*
48 47 a1i iljifilli+∞Fj+∞*supFj+∞**<*
49 16 a1i iljifilli+∞Fj+∞*Fj+∞**
50 simpr iljifilli+∞Fj+∞*Fj+∞*
51 49 50 infxrlesupxr iljifilli+∞Fj+∞*supFj+∞**<supFj+∞**<
52 rexr ll*
53 52 ad2antlr iljifilli+∞l*
54 max2 illifilli
55 54 adantr iljifilli+∞lifilli
56 53 29 33 55 37 xrletrd iljifilli+∞lj
57 53 27 56 icossico2 iljifilli+∞j+∞l+∞
58 57 imass2d iljifilli+∞Fj+∞Fl+∞
59 58 ssrind iljifilli+∞Fj+∞*Fl+∞*
60 20 a1i iljifilli+∞Fl+∞**
61 supxrss Fj+∞*Fl+∞*Fl+∞**supFj+∞**<supFl+∞**<
62 59 60 61 syl2anc iljifilli+∞supFj+∞**<supFl+∞**<
63 62 adantr iljifilli+∞Fj+∞*supFj+∞**<supFl+∞**<
64 19 48 23 51 63 xrletrd iljifilli+∞Fj+∞*supFj+∞**<supFl+∞**<
65 15 19 23 45 64 xrletrd iljifilli+∞Fj+∞*supFi+∞**<supFl+∞**<
66 65 ad5ant2345 φiljifilli+∞Fj+∞*supFi+∞**<supFl+∞**<
67 66 rexlimdva2 φiljifilli+∞Fj+∞*supFi+∞**<supFl+∞**<
68 11 67 mpd φilsupFi+∞**<supFl+∞**<
69 68 ralrimiva φilsupFi+∞**<supFl+∞**<
70 nfv lφ
71 xrltso <Or*
72 71 supex supFl+∞**<V
73 72 a1i φlsupFl+∞**<V
74 breq2 y=supFl+∞**<supFi+∞**<ysupFi+∞**<supFl+∞**<
75 70 73 74 ralrnmpt3 φyranlsupFl+∞**<supFi+∞**<ylsupFi+∞**<supFl+∞**<
76 75 adantr φiyranlsupFl+∞**<supFi+∞**<ylsupFi+∞**<supFl+∞**<
77 69 76 mpbird φiyranlsupFl+∞**<supFi+∞**<y
78 oveq1 l=il+∞=i+∞
79 78 imaeq2d l=iFl+∞=Fi+∞
80 79 ineq1d l=iFl+∞*=Fi+∞*
81 80 supeq1d l=isupFl+∞**<=supFi+∞**<
82 81 cbvmptv lsupFl+∞**<=isupFi+∞**<
83 82 rneqi ranlsupFl+∞**<=ranisupFi+∞**<
84 83 raleqi yranlsupFl+∞**<supFi+∞**<yyranisupFi+∞**<supFi+∞**<y
85 84 a1i φiyranlsupFl+∞**<supFi+∞**<yyranisupFi+∞**<supFi+∞**<y
86 77 85 mpbid φiyranisupFi+∞**<supFi+∞**<y
87 supxrcl Fi+∞**supFi+∞**<*
88 12 87 ax-mp supFi+∞**<*
89 88 rgenw isupFi+∞**<*
90 eqid isupFi+∞**<=isupFi+∞**<
91 90 rnmptss isupFi+∞**<*ranisupFi+∞**<*
92 89 91 ax-mp ranisupFi+∞**<*
93 92 a1i φiranisupFi+∞**<*
94 14 a1i φisupFi+∞**<*
95 infxrgelb ranisupFi+∞**<*supFi+∞**<*supFi+∞**<supranisupFi+∞**<*<yranisupFi+∞**<supFi+∞**<y
96 93 94 95 syl2anc φisupFi+∞**<supranisupFi+∞**<*<yranisupFi+∞**<supFi+∞**<y
97 86 96 mpbird φisupFi+∞**<supranisupFi+∞**<*<
98 97 ralrimiva φisupFi+∞**<supranisupFi+∞**<*<
99 nfv iφ
100 nfcv _i
101 nfmpt1 _iisupFi+∞**<
102 101 nfrn _iranisupFi+∞**<
103 nfcv _i*
104 nfcv _i<
105 102 103 104 nfinf _isupranisupFi+∞**<*<
106 infxrcl ranisupFi+∞**<*supranisupFi+∞**<*<*
107 92 106 ax-mp supranisupFi+∞**<*<*
108 107 a1i φsupranisupFi+∞**<*<*
109 99 100 105 94 108 supxrleubrnmptf φsupranisupFi+∞**<*<supranisupFi+∞**<*<isupFi+∞**<supranisupFi+∞**<*<
110 98 109 mpbird φsupranisupFi+∞**<*<supranisupFi+∞**<*<
111 eqid isupFi+∞**<=isupFi+∞**<
112 1 111 liminfvald φlim infF=supranisupFi+∞**<*<
113 1 90 limsupvald φlim supF=supranisupFi+∞**<*<
114 112 113 breq12d φlim infFlim supFsupranisupFi+∞**<*<supranisupFi+∞**<*<
115 110 114 mpbird φlim infFlim supF