Metamath Proof Explorer


Theorem liminfresico

Description: The inferior limit doesn't change when a function is restricted to an upperset of reals. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses liminfresico.1 φM
liminfresico.2 Z=M+∞
liminfresico.3 φFV
Assertion liminfresico φlim infFZ=lim infF

Proof

Step Hyp Ref Expression
1 liminfresico.1 φM
2 liminfresico.2 Z=M+∞
3 liminfresico.3 φFV
4 1 rexrd φM*
5 4 ad2antrr φkZyk+∞M*
6 pnfxr +∞*
7 6 a1i φkZyk+∞+∞*
8 ressxr *
9 6 a1i φ+∞*
10 icossre M+∞*M+∞
11 1 9 10 syl2anc φM+∞
12 11 adantr φkZM+∞
13 2 eleq2i kZkM+∞
14 13 biimpi kZkM+∞
15 14 adantl φkZkM+∞
16 12 15 sseldd φkZk
17 16 adantr φkZyk+∞k
18 simpr φkZyk+∞yk+∞
19 elicore kyk+∞y
20 17 18 19 syl2anc φkZyk+∞y
21 8 20 sselid φkZyk+∞y*
22 1 ad2antrr φkZyk+∞M
23 4 adantr φkZM*
24 6 a1i φkZ+∞*
25 23 24 15 icogelbd φkZMk
26 25 adantr φkZyk+∞Mk
27 8 17 sselid φkZyk+∞k*
28 27 7 18 icogelbd φkZyk+∞ky
29 22 17 20 26 28 letrd φkZyk+∞My
30 20 ltpnfd φkZyk+∞y<+∞
31 5 7 21 29 30 elicod φkZyk+∞yM+∞
32 31 2 eleqtrrdi φkZyk+∞yZ
33 32 ssd φkZk+∞Z
34 resima2 k+∞ZFZk+∞=Fk+∞
35 33 34 syl φkZFZk+∞=Fk+∞
36 35 ineq1d φkZFZk+∞*=Fk+∞*
37 36 infeq1d φkZsupFZk+∞**<=supFk+∞**<
38 37 mpteq2dva φkZsupFZk+∞**<=kZsupFk+∞**<
39 38 rneqd φrankZsupFZk+∞**<=rankZsupFk+∞**<
40 2 11 eqsstrid φZ
41 40 mptimass φksupFZk+∞**<Z=rankZsupFZk+∞**<
42 40 mptimass φksupFk+∞**<Z=rankZsupFk+∞**<
43 39 41 42 3eqtr4d φksupFZk+∞**<Z=ksupFk+∞**<Z
44 43 supeq1d φsupksupFZk+∞**<Z*<=supksupFk+∞**<Z*<
45 eqid ksupFZk+∞**<=ksupFZk+∞**<
46 3 resexd φFZV
47 2 supeq1i supZ*<=supM+∞*<
48 47 a1i φsupZ*<=supM+∞*<
49 1 renepnfd φM+∞
50 icopnfsup M*M+∞supM+∞*<=+∞
51 4 49 50 syl2anc φsupM+∞*<=+∞
52 48 51 eqtrd φsupZ*<=+∞
53 45 46 40 52 liminfval2 φlim infFZ=supksupFZk+∞**<Z*<
54 eqid ksupFk+∞**<=ksupFk+∞**<
55 54 3 40 52 liminfval2 φlim infF=supksupFk+∞**<Z*<
56 44 53 55 3eqtr4d φlim infFZ=lim infF