Metamath Proof Explorer


Theorem limsup10exlem

Description: The range of the given function. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses limsup10exlem.1 F=nif2n01
limsup10exlem.2 φK
Assertion limsup10exlem φFK+∞=01

Proof

Step Hyp Ref Expression
1 limsup10exlem.1 F=nif2n01
2 limsup10exlem.2 φK
3 c0ex 0V
4 3 prid1 001
5 1re 1
6 5 elexi 1V
7 6 prid2 101
8 4 7 ifcli if2n0101
9 8 a1i φnK+∞if2n0101
10 9 ralrimiva φnK+∞if2n0101
11 nfv nφ
12 3 6 ifex if2n01V
13 12 a1i φnK+∞if2n01V
14 11 13 1 imassmpt φFK+∞01nK+∞if2n0101
15 10 14 mpbird φFK+∞01
16 2 ceilcld φK
17 1zzd φ1
18 16 17 ifcld φif1KK1
19 18 adantr φn=2if1KK1if1KK1
20 simpr φn=2if1KK1n=2if1KK1
21 2teven if1KK1n=2if1KK12n
22 19 20 21 syl2anc φn=2if1KK12n
23 22 iftrued φn=2if1KK1if2n01=0
24 2nn 2
25 24 a1i φ2
26 eqid 1=1
27 5 a1i φ1K1
28 2 adantr φ1KK
29 16 zred φK
30 29 adantr φ1KK
31 simpr φ1K1K
32 2 ceilged φKK
33 32 adantr φ1KKK
34 27 28 30 31 33 letrd φ1K1K
35 iftrue 1Kif1KK1=K
36 35 adantl φ1Kif1KK1=K
37 34 36 breqtrrd φ1K1if1KK1
38 5 leidi 11
39 38 a1i φ¬1K11
40 iffalse ¬1Kif1KK1=1
41 40 adantl φ¬1Kif1KK1=1
42 39 41 breqtrrd φ¬1K1if1KK1
43 37 42 pm2.61dan φ1if1KK1
44 26 17 18 43 eluzd φif1KK11
45 nnuz =1
46 44 45 eleqtrrdi φif1KK1
47 25 46 nnmulcld φ2if1KK1
48 3 a1i φ0V
49 1 23 47 48 fvmptd2 φF2if1KK1=0
50 12 1 fnmpti FFn
51 50 a1i φFFn
52 2 rexrd φK*
53 pnfxr +∞*
54 53 a1i φ+∞*
55 47 nnxrd φ2if1KK1*
56 47 nnred φ2if1KK1
57 46 nnred φif1KK1
58 33 36 breqtrrd φ1KKif1KK1
59 2 adantr φ¬1KK
60 5 a1i φ¬1K1
61 simpr φ¬1K¬1K
62 59 60 61 nleltd φ¬1KK<1
63 59 60 62 ltled φ¬1KK1
64 41 eqcomd φ¬1K1=if1KK1
65 63 64 breqtrd φ¬1KKif1KK1
66 58 65 pm2.61dan φKif1KK1
67 46 nnrpd φif1KK1+
68 2timesgt if1KK1+if1KK1<2if1KK1
69 67 68 syl φif1KK1<2if1KK1
70 2 57 56 66 69 lelttrd φK<2if1KK1
71 2 56 70 ltled φK2if1KK1
72 56 ltpnfd φ2if1KK1<+∞
73 52 54 55 71 72 elicod φ2if1KK1K+∞
74 51 47 73 fnfvimad φF2if1KK1FK+∞
75 49 74 eqeltrrd φ0FK+∞
76 18 adantr φn=2if1KK1+1if1KK1
77 simpr φn=2if1KK1+1n=2if1KK1+1
78 2tp1odd if1KK1n=2if1KK1+1¬2n
79 76 77 78 syl2anc φn=2if1KK1+1¬2n
80 79 iffalsed φn=2if1KK1+1if2n01=1
81 47 peano2nnd φ2if1KK1+1
82 1xr 1*
83 82 a1i φ1*
84 1 80 81 83 fvmptd2 φF2if1KK1+1=1
85 81 nnxrd φ2if1KK1+1*
86 81 nnred φ2if1KK1+1
87 56 ltp1d φ2if1KK1<2if1KK1+1
88 2 56 86 70 87 lttrd φK<2if1KK1+1
89 2 86 88 ltled φK2if1KK1+1
90 86 ltpnfd φ2if1KK1+1<+∞
91 52 54 85 89 90 elicod φ2if1KK1+1K+∞
92 51 81 91 fnfvimad φF2if1KK1+1FK+∞
93 84 92 eqeltrrd φ1FK+∞
94 75 93 prssd φ01FK+∞
95 15 94 eqssd φFK+∞=01