Metamath Proof Explorer


Theorem limsup10exlem

Description: The range of the given function. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses limsup10exlem.1 F = n if 2 n 0 1
limsup10exlem.2 φ K
Assertion limsup10exlem φ F K +∞ = 0 1

Proof

Step Hyp Ref Expression
1 limsup10exlem.1 F = n if 2 n 0 1
2 limsup10exlem.2 φ K
3 c0ex 0 V
4 3 prid1 0 0 1
5 1re 1
6 5 elexi 1 V
7 6 prid2 1 0 1
8 4 7 ifcli if 2 n 0 1 0 1
9 8 a1i φ n K +∞ if 2 n 0 1 0 1
10 9 ralrimiva φ n K +∞ if 2 n 0 1 0 1
11 nfv n φ
12 3 6 ifex if 2 n 0 1 V
13 12 a1i φ n K +∞ if 2 n 0 1 V
14 11 13 1 imassmpt φ F K +∞ 0 1 n K +∞ if 2 n 0 1 0 1
15 10 14 mpbird φ F K +∞ 0 1
16 2 ceilcld φ K
17 1zzd φ 1
18 16 17 ifcld φ if 1 K K 1
19 18 adantr φ n = 2 if 1 K K 1 if 1 K K 1
20 simpr φ n = 2 if 1 K K 1 n = 2 if 1 K K 1
21 2teven if 1 K K 1 n = 2 if 1 K K 1 2 n
22 19 20 21 syl2anc φ n = 2 if 1 K K 1 2 n
23 22 iftrued φ n = 2 if 1 K K 1 if 2 n 0 1 = 0
24 2nn 2
25 24 a1i φ 2
26 eqid 1 = 1
27 5 a1i φ 1 K 1
28 2 adantr φ 1 K K
29 16 zred φ K
30 29 adantr φ 1 K K
31 simpr φ 1 K 1 K
32 2 ceilged φ K K
33 32 adantr φ 1 K K K
34 27 28 30 31 33 letrd φ 1 K 1 K
35 iftrue 1 K if 1 K K 1 = K
36 35 adantl φ 1 K if 1 K K 1 = K
37 34 36 breqtrrd φ 1 K 1 if 1 K K 1
38 5 leidi 1 1
39 38 a1i φ ¬ 1 K 1 1
40 iffalse ¬ 1 K if 1 K K 1 = 1
41 40 adantl φ ¬ 1 K if 1 K K 1 = 1
42 39 41 breqtrrd φ ¬ 1 K 1 if 1 K K 1
43 37 42 pm2.61dan φ 1 if 1 K K 1
44 26 17 18 43 eluzd φ if 1 K K 1 1
45 nnuz = 1
46 44 45 eleqtrrdi φ if 1 K K 1
47 25 46 nnmulcld φ 2 if 1 K K 1
48 3 a1i φ 0 V
49 1 23 47 48 fvmptd2 φ F 2 if 1 K K 1 = 0
50 12 1 fnmpti F Fn
51 50 a1i φ F Fn
52 2 rexrd φ K *
53 pnfxr +∞ *
54 53 a1i φ +∞ *
55 47 nnxrd φ 2 if 1 K K 1 *
56 47 nnred φ 2 if 1 K K 1
57 46 nnred φ if 1 K K 1
58 33 36 breqtrrd φ 1 K K if 1 K K 1
59 2 adantr φ ¬ 1 K K
60 5 a1i φ ¬ 1 K 1
61 simpr φ ¬ 1 K ¬ 1 K
62 59 60 61 nleltd φ ¬ 1 K K < 1
63 59 60 62 ltled φ ¬ 1 K K 1
64 41 eqcomd φ ¬ 1 K 1 = if 1 K K 1
65 63 64 breqtrd φ ¬ 1 K K if 1 K K 1
66 58 65 pm2.61dan φ K if 1 K K 1
67 46 nnrpd φ if 1 K K 1 +
68 2timesgt if 1 K K 1 + if 1 K K 1 < 2 if 1 K K 1
69 67 68 syl φ if 1 K K 1 < 2 if 1 K K 1
70 2 57 56 66 69 lelttrd φ K < 2 if 1 K K 1
71 2 56 70 ltled φ K 2 if 1 K K 1
72 56 ltpnfd φ 2 if 1 K K 1 < +∞
73 52 54 55 71 72 elicod φ 2 if 1 K K 1 K +∞
74 51 47 73 fnfvimad φ F 2 if 1 K K 1 F K +∞
75 49 74 eqeltrrd φ 0 F K +∞
76 18 adantr φ n = 2 if 1 K K 1 + 1 if 1 K K 1
77 simpr φ n = 2 if 1 K K 1 + 1 n = 2 if 1 K K 1 + 1
78 2tp1odd if 1 K K 1 n = 2 if 1 K K 1 + 1 ¬ 2 n
79 76 77 78 syl2anc φ n = 2 if 1 K K 1 + 1 ¬ 2 n
80 79 iffalsed φ n = 2 if 1 K K 1 + 1 if 2 n 0 1 = 1
81 47 peano2nnd φ 2 if 1 K K 1 + 1
82 1xr 1 *
83 82 a1i φ 1 *
84 1 80 81 83 fvmptd2 φ F 2 if 1 K K 1 + 1 = 1
85 81 nnxrd φ 2 if 1 K K 1 + 1 *
86 81 nnred φ 2 if 1 K K 1 + 1
87 56 ltp1d φ 2 if 1 K K 1 < 2 if 1 K K 1 + 1
88 2 56 86 70 87 lttrd φ K < 2 if 1 K K 1 + 1
89 2 86 88 ltled φ K 2 if 1 K K 1 + 1
90 86 ltpnfd φ 2 if 1 K K 1 + 1 < +∞
91 52 54 85 89 90 elicod φ 2 if 1 K K 1 + 1 K +∞
92 51 81 91 fnfvimad φ F 2 if 1 K K 1 + 1 F K +∞
93 84 92 eqeltrrd φ 1 F K +∞
94 75 93 prssd φ 0 1 F K +∞
95 15 94 eqssd φ F K +∞ = 0 1