Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Glauco Siliprandi
Limits
Inferior limit (lim inf)
limsup10exlem
Next ⟩
limsup10ex
Metamath Proof Explorer
Ascii
Unicode
Theorem
limsup10exlem
Description:
The range of the given function.
(Contributed by
Glauco Siliprandi
, 2-Jan-2022)
Ref
Expression
Hypotheses
limsup10exlem.1
⊢
F
=
n
∈
ℕ
⟼
if
2
∥
n
0
1
limsup10exlem.2
⊢
φ
→
K
∈
ℝ
Assertion
limsup10exlem
⊢
φ
→
F
K
+∞
=
0
1
Proof
Step
Hyp
Ref
Expression
1
limsup10exlem.1
⊢
F
=
n
∈
ℕ
⟼
if
2
∥
n
0
1
2
limsup10exlem.2
⊢
φ
→
K
∈
ℝ
3
c0ex
⊢
0
∈
V
4
3
prid1
⊢
0
∈
0
1
5
1re
⊢
1
∈
ℝ
6
5
elexi
⊢
1
∈
V
7
6
prid2
⊢
1
∈
0
1
8
4
7
ifcli
⊢
if
2
∥
n
0
1
∈
0
1
9
8
a1i
⊢
φ
∧
n
∈
ℕ
∩
K
+∞
→
if
2
∥
n
0
1
∈
0
1
10
9
ralrimiva
⊢
φ
→
∀
n
∈
ℕ
∩
K
+∞
if
2
∥
n
0
1
∈
0
1
11
nfv
⊢
Ⅎ
n
φ
12
3
6
ifex
⊢
if
2
∥
n
0
1
∈
V
13
12
a1i
⊢
φ
∧
n
∈
ℕ
∩
K
+∞
→
if
2
∥
n
0
1
∈
V
14
11
13
1
imassmpt
⊢
φ
→
F
K
+∞
⊆
0
1
↔
∀
n
∈
ℕ
∩
K
+∞
if
2
∥
n
0
1
∈
0
1
15
10
14
mpbird
⊢
φ
→
F
K
+∞
⊆
0
1
16
2
ceilcld
⊢
φ
→
K
∈
ℤ
17
1zzd
⊢
φ
→
1
∈
ℤ
18
16
17
ifcld
⊢
φ
→
if
1
≤
K
K
1
∈
ℤ
19
18
adantr
⊢
φ
∧
n
=
2
if
1
≤
K
K
1
→
if
1
≤
K
K
1
∈
ℤ
20
simpr
⊢
φ
∧
n
=
2
if
1
≤
K
K
1
→
n
=
2
if
1
≤
K
K
1
21
2teven
⊢
if
1
≤
K
K
1
∈
ℤ
∧
n
=
2
if
1
≤
K
K
1
→
2
∥
n
22
19
20
21
syl2anc
⊢
φ
∧
n
=
2
if
1
≤
K
K
1
→
2
∥
n
23
22
iftrued
⊢
φ
∧
n
=
2
if
1
≤
K
K
1
→
if
2
∥
n
0
1
=
0
24
2nn
⊢
2
∈
ℕ
25
24
a1i
⊢
φ
→
2
∈
ℕ
26
eqid
⊢
ℤ
≥
1
=
ℤ
≥
1
27
5
a1i
⊢
φ
∧
1
≤
K
→
1
∈
ℝ
28
2
adantr
⊢
φ
∧
1
≤
K
→
K
∈
ℝ
29
16
zred
⊢
φ
→
K
∈
ℝ
30
29
adantr
⊢
φ
∧
1
≤
K
→
K
∈
ℝ
31
simpr
⊢
φ
∧
1
≤
K
→
1
≤
K
32
2
ceilged
⊢
φ
→
K
≤
K
33
32
adantr
⊢
φ
∧
1
≤
K
→
K
≤
K
34
27
28
30
31
33
letrd
⊢
φ
∧
1
≤
K
→
1
≤
K
35
iftrue
⊢
1
≤
K
→
if
1
≤
K
K
1
=
K
36
35
adantl
⊢
φ
∧
1
≤
K
→
if
1
≤
K
K
1
=
K
37
34
36
breqtrrd
⊢
φ
∧
1
≤
K
→
1
≤
if
1
≤
K
K
1
38
5
leidi
⊢
1
≤
1
39
38
a1i
⊢
φ
∧
¬
1
≤
K
→
1
≤
1
40
iffalse
⊢
¬
1
≤
K
→
if
1
≤
K
K
1
=
1
41
40
adantl
⊢
φ
∧
¬
1
≤
K
→
if
1
≤
K
K
1
=
1
42
39
41
breqtrrd
⊢
φ
∧
¬
1
≤
K
→
1
≤
if
1
≤
K
K
1
43
37
42
pm2.61dan
⊢
φ
→
1
≤
if
1
≤
K
K
1
44
26
17
18
43
eluzd
⊢
φ
→
if
1
≤
K
K
1
∈
ℤ
≥
1
45
nnuz
⊢
ℕ
=
ℤ
≥
1
46
44
45
eleqtrrdi
⊢
φ
→
if
1
≤
K
K
1
∈
ℕ
47
25
46
nnmulcld
⊢
φ
→
2
if
1
≤
K
K
1
∈
ℕ
48
3
a1i
⊢
φ
→
0
∈
V
49
1
23
47
48
fvmptd2
⊢
φ
→
F
2
if
1
≤
K
K
1
=
0
50
12
1
fnmpti
⊢
F
Fn
ℕ
51
50
a1i
⊢
φ
→
F
Fn
ℕ
52
2
rexrd
⊢
φ
→
K
∈
ℝ
*
53
pnfxr
⊢
+∞
∈
ℝ
*
54
53
a1i
⊢
φ
→
+∞
∈
ℝ
*
55
47
nnxrd
⊢
φ
→
2
if
1
≤
K
K
1
∈
ℝ
*
56
47
nnred
⊢
φ
→
2
if
1
≤
K
K
1
∈
ℝ
57
46
nnred
⊢
φ
→
if
1
≤
K
K
1
∈
ℝ
58
33
36
breqtrrd
⊢
φ
∧
1
≤
K
→
K
≤
if
1
≤
K
K
1
59
2
adantr
⊢
φ
∧
¬
1
≤
K
→
K
∈
ℝ
60
5
a1i
⊢
φ
∧
¬
1
≤
K
→
1
∈
ℝ
61
simpr
⊢
φ
∧
¬
1
≤
K
→
¬
1
≤
K
62
59
60
61
nleltd
⊢
φ
∧
¬
1
≤
K
→
K
<
1
63
59
60
62
ltled
⊢
φ
∧
¬
1
≤
K
→
K
≤
1
64
41
eqcomd
⊢
φ
∧
¬
1
≤
K
→
1
=
if
1
≤
K
K
1
65
63
64
breqtrd
⊢
φ
∧
¬
1
≤
K
→
K
≤
if
1
≤
K
K
1
66
58
65
pm2.61dan
⊢
φ
→
K
≤
if
1
≤
K
K
1
67
46
nnrpd
⊢
φ
→
if
1
≤
K
K
1
∈
ℝ
+
68
2timesgt
⊢
if
1
≤
K
K
1
∈
ℝ
+
→
if
1
≤
K
K
1
<
2
if
1
≤
K
K
1
69
67
68
syl
⊢
φ
→
if
1
≤
K
K
1
<
2
if
1
≤
K
K
1
70
2
57
56
66
69
lelttrd
⊢
φ
→
K
<
2
if
1
≤
K
K
1
71
2
56
70
ltled
⊢
φ
→
K
≤
2
if
1
≤
K
K
1
72
56
ltpnfd
⊢
φ
→
2
if
1
≤
K
K
1
<
+∞
73
52
54
55
71
72
elicod
⊢
φ
→
2
if
1
≤
K
K
1
∈
K
+∞
74
51
47
73
fnfvimad
⊢
φ
→
F
2
if
1
≤
K
K
1
∈
F
K
+∞
75
49
74
eqeltrrd
⊢
φ
→
0
∈
F
K
+∞
76
18
adantr
⊢
φ
∧
n
=
2
if
1
≤
K
K
1
+
1
→
if
1
≤
K
K
1
∈
ℤ
77
simpr
⊢
φ
∧
n
=
2
if
1
≤
K
K
1
+
1
→
n
=
2
if
1
≤
K
K
1
+
1
78
2tp1odd
⊢
if
1
≤
K
K
1
∈
ℤ
∧
n
=
2
if
1
≤
K
K
1
+
1
→
¬
2
∥
n
79
76
77
78
syl2anc
⊢
φ
∧
n
=
2
if
1
≤
K
K
1
+
1
→
¬
2
∥
n
80
79
iffalsed
⊢
φ
∧
n
=
2
if
1
≤
K
K
1
+
1
→
if
2
∥
n
0
1
=
1
81
47
peano2nnd
⊢
φ
→
2
if
1
≤
K
K
1
+
1
∈
ℕ
82
1xr
⊢
1
∈
ℝ
*
83
82
a1i
⊢
φ
→
1
∈
ℝ
*
84
1
80
81
83
fvmptd2
⊢
φ
→
F
2
if
1
≤
K
K
1
+
1
=
1
85
81
nnxrd
⊢
φ
→
2
if
1
≤
K
K
1
+
1
∈
ℝ
*
86
81
nnred
⊢
φ
→
2
if
1
≤
K
K
1
+
1
∈
ℝ
87
56
ltp1d
⊢
φ
→
2
if
1
≤
K
K
1
<
2
if
1
≤
K
K
1
+
1
88
2
56
86
70
87
lttrd
⊢
φ
→
K
<
2
if
1
≤
K
K
1
+
1
89
2
86
88
ltled
⊢
φ
→
K
≤
2
if
1
≤
K
K
1
+
1
90
86
ltpnfd
⊢
φ
→
2
if
1
≤
K
K
1
+
1
<
+∞
91
52
54
85
89
90
elicod
⊢
φ
→
2
if
1
≤
K
K
1
+
1
∈
K
+∞
92
51
81
91
fnfvimad
⊢
φ
→
F
2
if
1
≤
K
K
1
+
1
∈
F
K
+∞
93
84
92
eqeltrrd
⊢
φ
→
1
∈
F
K
+∞
94
75
93
prssd
⊢
φ
→
0
1
⊆
F
K
+∞
95
15
94
eqssd
⊢
φ
→
F
K
+∞
=
0
1