| Step | Hyp | Ref | Expression | 
						
							| 1 |  | limsuppnflem.j |  | 
						
							| 2 |  | limsuppnflem.a |  | 
						
							| 3 |  | limsuppnflem.f |  | 
						
							| 4 |  | id |  | 
						
							| 5 |  | imnan |  | 
						
							| 6 | 5 | ralbii |  | 
						
							| 7 |  | ralnex |  | 
						
							| 8 | 6 7 | bitri |  | 
						
							| 9 | 8 | rexbii |  | 
						
							| 10 |  | rexnal |  | 
						
							| 11 | 9 10 | bitri |  | 
						
							| 12 | 11 | rexbii |  | 
						
							| 13 |  | rexnal |  | 
						
							| 14 | 12 13 | bitri |  | 
						
							| 15 | 14 | biimpri |  | 
						
							| 16 |  | simp1 |  | 
						
							| 17 |  | id |  | 
						
							| 18 | 17 | imp |  | 
						
							| 19 | 18 | 3adant1 |  | 
						
							| 20 | 3 | ffvelcdmda |  | 
						
							| 21 | 20 | ad4ant14 |  | 
						
							| 22 | 21 | adantr |  | 
						
							| 23 |  | simpllr |  | 
						
							| 24 |  | rexr |  | 
						
							| 25 | 23 24 | syl |  | 
						
							| 26 | 25 | adantr |  | 
						
							| 27 |  | simpr |  | 
						
							| 28 | 20 | ad4ant13 |  | 
						
							| 29 | 24 | ad3antlr |  | 
						
							| 30 | 28 29 | xrltnled |  | 
						
							| 31 | 27 30 | mpbird |  | 
						
							| 32 | 31 | adantllr |  | 
						
							| 33 | 22 26 32 | xrltled |  | 
						
							| 34 | 16 19 33 | syl2anc |  | 
						
							| 35 | 34 | 3exp |  | 
						
							| 36 | 35 | ralimdva |  | 
						
							| 37 | 36 | reximdva |  | 
						
							| 38 | 37 | reximdva |  | 
						
							| 39 | 38 | imp |  | 
						
							| 40 | 4 15 39 | syl2an |  | 
						
							| 41 |  | reex |  | 
						
							| 42 | 41 | a1i |  | 
						
							| 43 | 42 2 | ssexd |  | 
						
							| 44 | 3 43 | fexd |  | 
						
							| 45 | 44 | limsupcld |  | 
						
							| 46 | 45 | ad2antrr |  | 
						
							| 47 | 24 | ad2antlr |  | 
						
							| 48 |  | pnfxr |  | 
						
							| 49 | 48 | a1i |  | 
						
							| 50 | 2 | ad2antrr |  | 
						
							| 51 | 3 | ad2antrr |  | 
						
							| 52 |  | simpr |  | 
						
							| 53 | 1 50 51 47 52 | limsupbnd1f |  | 
						
							| 54 |  | ltpnf |  | 
						
							| 55 | 54 | ad2antlr |  | 
						
							| 56 | 46 47 49 53 55 | xrlelttrd |  | 
						
							| 57 | 56 | rexlimdva2 |  | 
						
							| 58 | 57 | imp |  | 
						
							| 59 | 40 58 | syldan |  | 
						
							| 60 | 59 | adantlr |  | 
						
							| 61 |  | id |  | 
						
							| 62 | 48 | a1i |  | 
						
							| 63 | 61 62 | eqeltrd |  | 
						
							| 64 | 63 61 | xreqnltd |  | 
						
							| 65 | 64 | adantl |  | 
						
							| 66 | 65 | adantr |  | 
						
							| 67 | 60 66 | condan |  | 
						
							| 68 | 67 | ex |  | 
						
							| 69 | 2 | adantr |  | 
						
							| 70 | 3 | adantr |  | 
						
							| 71 |  | simpr |  | 
						
							| 72 | 1 69 70 71 | limsuppnfd |  | 
						
							| 73 | 72 | ex |  | 
						
							| 74 | 68 73 | impbid |  |