Metamath Proof Explorer


Theorem limsuppnflem

Description: If the restriction of a function to every upper interval is unbounded above, its limsup is +oo . (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses limsuppnflem.j _jF
limsuppnflem.a φA
limsuppnflem.f φF:A*
Assertion limsuppnflem φlim supF=+∞xkjAkjxFj

Proof

Step Hyp Ref Expression
1 limsuppnflem.j _jF
2 limsuppnflem.a φA
3 limsuppnflem.f φF:A*
4 id φφ
5 imnan kj¬xFj¬kjxFj
6 5 ralbii jAkj¬xFjjA¬kjxFj
7 ralnex jA¬kjxFj¬jAkjxFj
8 6 7 bitri jAkj¬xFj¬jAkjxFj
9 8 rexbii kjAkj¬xFjk¬jAkjxFj
10 rexnal k¬jAkjxFj¬kjAkjxFj
11 9 10 bitri kjAkj¬xFj¬kjAkjxFj
12 11 rexbii xkjAkj¬xFjx¬kjAkjxFj
13 rexnal x¬kjAkjxFj¬xkjAkjxFj
14 12 13 bitri xkjAkj¬xFj¬xkjAkjxFj
15 14 biimpri ¬xkjAkjxFjxkjAkj¬xFj
16 simp1 φxkjAkj¬xFjkjφxkjA
17 id kj¬xFjkj¬xFj
18 17 imp kj¬xFjkj¬xFj
19 18 3adant1 φxkjAkj¬xFjkj¬xFj
20 3 ffvelcdmda φjAFj*
21 20 ad4ant14 φxkjAFj*
22 21 adantr φxkjA¬xFjFj*
23 simpllr φxkjAx
24 rexr xx*
25 23 24 syl φxkjAx*
26 25 adantr φxkjA¬xFjx*
27 simpr φxjA¬xFj¬xFj
28 20 ad4ant13 φxjA¬xFjFj*
29 24 ad3antlr φxjA¬xFjx*
30 28 29 xrltnled φxjA¬xFjFj<x¬xFj
31 27 30 mpbird φxjA¬xFjFj<x
32 31 adantllr φxkjA¬xFjFj<x
33 22 26 32 xrltled φxkjA¬xFjFjx
34 16 19 33 syl2anc φxkjAkj¬xFjkjFjx
35 34 3exp φxkjAkj¬xFjkjFjx
36 35 ralimdva φxkjAkj¬xFjjAkjFjx
37 36 reximdva φxkjAkj¬xFjkjAkjFjx
38 37 reximdva φxkjAkj¬xFjxkjAkjFjx
39 38 imp φxkjAkj¬xFjxkjAkjFjx
40 4 15 39 syl2an φ¬xkjAkjxFjxkjAkjFjx
41 reex V
42 41 a1i φV
43 42 2 ssexd φAV
44 3 43 fexd φFV
45 44 limsupcld φlim supF*
46 45 ad2antrr φxkjAkjFjxlim supF*
47 24 ad2antlr φxkjAkjFjxx*
48 pnfxr +∞*
49 48 a1i φxkjAkjFjx+∞*
50 2 ad2antrr φxkjAkjFjxA
51 3 ad2antrr φxkjAkjFjxF:A*
52 simpr φxkjAkjFjxkjAkjFjx
53 1 50 51 47 52 limsupbnd1f φxkjAkjFjxlim supFx
54 ltpnf xx<+∞
55 54 ad2antlr φxkjAkjFjxx<+∞
56 46 47 49 53 55 xrlelttrd φxkjAkjFjxlim supF<+∞
57 56 rexlimdva2 φxkjAkjFjxlim supF<+∞
58 57 imp φxkjAkjFjxlim supF<+∞
59 40 58 syldan φ¬xkjAkjxFjlim supF<+∞
60 59 adantlr φlim supF=+∞¬xkjAkjxFjlim supF<+∞
61 id lim supF=+∞lim supF=+∞
62 48 a1i lim supF=+∞+∞*
63 61 62 eqeltrd lim supF=+∞lim supF*
64 63 61 xreqnltd lim supF=+∞¬lim supF<+∞
65 64 adantl φlim supF=+∞¬lim supF<+∞
66 65 adantr φlim supF=+∞¬xkjAkjxFj¬lim supF<+∞
67 60 66 condan φlim supF=+∞xkjAkjxFj
68 67 ex φlim supF=+∞xkjAkjxFj
69 2 adantr φxkjAkjxFjA
70 3 adantr φxkjAkjxFjF:A*
71 simpr φxkjAkjxFjxkjAkjxFj
72 1 69 70 71 limsuppnfd φxkjAkjxFjlim supF=+∞
73 72 ex φxkjAkjxFjlim supF=+∞
74 68 73 impbid φlim supF=+∞xkjAkjxFj