Metamath Proof Explorer


Theorem lincresunit2

Description: Property 2 of a specially modified restriction of a linear combination containing a unit as scalar. (Contributed by AV, 18-May-2019)

Ref Expression
Hypotheses lincresunit.b B=BaseM
lincresunit.r R=ScalarM
lincresunit.e E=BaseR
lincresunit.u U=UnitR
lincresunit.0 0˙=0R
lincresunit.z Z=0M
lincresunit.n N=invgR
lincresunit.i I=invrR
lincresunit.t ·˙=R
lincresunit.g G=sSXINFX·˙Fs
Assertion lincresunit2 S𝒫BMLModXSFESFXUfinSupp0˙FfinSupp0˙G

Proof

Step Hyp Ref Expression
1 lincresunit.b B=BaseM
2 lincresunit.r R=ScalarM
3 lincresunit.e E=BaseR
4 lincresunit.u U=UnitR
5 lincresunit.0 0˙=0R
6 lincresunit.z Z=0M
7 lincresunit.n N=invgR
8 lincresunit.i I=invrR
9 lincresunit.t ·˙=R
10 lincresunit.g G=sSXINFX·˙Fs
11 difexg S𝒫BSXV
12 11 3ad2ant1 S𝒫BMLModXSSXV
13 12 adantl FESFXUS𝒫BMLModXSSXV
14 13 adantr FESFXUS𝒫BMLModXSfinSupp0˙FSXV
15 mptexg SXVsSXINFX·˙FsV
16 10 15 eqeltrid SXVGV
17 14 16 syl FESFXUS𝒫BMLModXSfinSupp0˙FGV
18 10 funmpt2 FunG
19 18 a1i FESFXUS𝒫BMLModXSfinSupp0˙FFunG
20 5 fvexi 0˙V
21 20 a1i FESFXUS𝒫BMLModXSfinSupp0˙F0˙V
22 simpr FESFXUS𝒫BMLModXSfinSupp0˙FfinSupp0˙F
23 22 fsuppimpd FESFXUS𝒫BMLModXSfinSupp0˙FFsupp0˙Fin
24 simplr FESFXUS𝒫BMLModXSsSXS𝒫BMLModXS
25 simpll FESFXUS𝒫BMLModXSsSXFESFXU
26 eldifi sSXsS
27 26 adantl FESFXUS𝒫BMLModXSsSXsS
28 1 2 3 4 5 6 7 8 9 10 lincresunitlem2 S𝒫BMLModXSFESFXUsSINFX·˙FsE
29 24 25 27 28 syl21anc FESFXUS𝒫BMLModXSsSXINFX·˙FsE
30 29 ralrimiva FESFXUS𝒫BMLModXSsSXINFX·˙FsE
31 10 fnmpt sSXINFX·˙FsEGFnSX
32 30 31 syl FESFXUS𝒫BMLModXSGFnSX
33 elmapfn FESFFnS
34 33 adantr FESFXUFFnS
35 34 adantr FESFXUS𝒫BMLModXSFFnS
36 32 35 jca FESFXUS𝒫BMLModXSGFnSXFFnS
37 difssd FESFXUS𝒫BMLModXSSXS
38 simpr1 FESFXUS𝒫BMLModXSS𝒫B
39 20 a1i FESFXUS𝒫BMLModXS0˙V
40 37 38 39 3jca FESFXUS𝒫BMLModXSSXSS𝒫B0˙V
41 fveq2 s=xFs=Fx
42 41 oveq2d s=xINFX·˙Fs=INFX·˙Fx
43 simplr FESFXUS𝒫BMLModXSxSXFx=0˙xSX
44 simpllr FESFXUS𝒫BMLModXSxSXFx=0˙S𝒫BMLModXS
45 simpll FESFXUS𝒫BMLModXSxSXFESFXU
46 45 adantr FESFXUS𝒫BMLModXSxSXFx=0˙FESFXU
47 eldifi xSXxS
48 47 adantl FESFXUS𝒫BMLModXSxSXxS
49 48 adantr FESFXUS𝒫BMLModXSxSXFx=0˙xS
50 1 2 3 4 5 6 7 8 9 10 lincresunitlem2 S𝒫BMLModXSFESFXUxSINFX·˙FxE
51 44 46 49 50 syl21anc FESFXUS𝒫BMLModXSxSXFx=0˙INFX·˙FxE
52 10 42 43 51 fvmptd3 FESFXUS𝒫BMLModXSxSXFx=0˙Gx=INFX·˙Fx
53 oveq2 Fx=0˙INFX·˙Fx=INFX·˙0˙
54 2 lmodring MLModRRing
55 54 3ad2ant2 S𝒫BMLModXSRRing
56 55 adantl FESFXUS𝒫BMLModXSRRing
57 1 2 3 4 5 6 7 8 9 10 lincresunitlem1 S𝒫BMLModXSFESFXUINFXE
58 57 ancoms FESFXUS𝒫BMLModXSINFXE
59 3 9 5 ringrz RRingINFXEINFX·˙0˙=0˙
60 56 58 59 syl2anc FESFXUS𝒫BMLModXSINFX·˙0˙=0˙
61 60 adantr FESFXUS𝒫BMLModXSxSXINFX·˙0˙=0˙
62 53 61 sylan9eqr FESFXUS𝒫BMLModXSxSXFx=0˙INFX·˙Fx=0˙
63 52 62 eqtrd FESFXUS𝒫BMLModXSxSXFx=0˙Gx=0˙
64 63 ex FESFXUS𝒫BMLModXSxSXFx=0˙Gx=0˙
65 64 ralrimiva FESFXUS𝒫BMLModXSxSXFx=0˙Gx=0˙
66 suppfnss GFnSXFFnSSXSS𝒫B0˙VxSXFx=0˙Gx=0˙Gsupp0˙Fsupp0˙
67 66 imp GFnSXFFnSSXSS𝒫B0˙VxSXFx=0˙Gx=0˙Gsupp0˙Fsupp0˙
68 36 40 65 67 syl21anc FESFXUS𝒫BMLModXSGsupp0˙Fsupp0˙
69 68 adantr FESFXUS𝒫BMLModXSfinSupp0˙FGsupp0˙Fsupp0˙
70 suppssfifsupp GVFunG0˙VFsupp0˙FinGsupp0˙Fsupp0˙finSupp0˙G
71 17 19 21 23 69 70 syl32anc FESFXUS𝒫BMLModXSfinSupp0˙FfinSupp0˙G
72 71 ex FESFXUS𝒫BMLModXSfinSupp0˙FfinSupp0˙G
73 72 ex FESFXUS𝒫BMLModXSfinSupp0˙FfinSupp0˙G
74 73 com23 FESFXUfinSupp0˙FS𝒫BMLModXSfinSupp0˙G
75 74 3impia FESFXUfinSupp0˙FS𝒫BMLModXSfinSupp0˙G
76 75 impcom S𝒫BMLModXSFESFXUfinSupp0˙FfinSupp0˙G