Metamath Proof Explorer


Theorem lineext

Description: Extend a line with a missing point. Theorem 4.14 of Schwabhauser p. 37. (Contributed by Scott Fenton, 6-Oct-2013)

Ref Expression
Assertion lineext NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NAColinearBCABCgrDEf𝔼NABCCgr3DEf

Proof

Step Hyp Ref Expression
1 brcolinear NA𝔼NB𝔼NC𝔼NAColinearBCABtwnBCBBtwnCACBtwnAB
2 1 3adant3 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NAColinearBCABtwnBCBBtwnCACBtwnAB
3 2 anbi1d NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NAColinearBCABCgrDEABtwnBCBBtwnCACBtwnABABCgrDE
4 simp1 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NN
5 simp3r NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NE𝔼N
6 simp3l NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼ND𝔼N
7 5 6 jca NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NE𝔼ND𝔼N
8 simp21 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NA𝔼N
9 simp23 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NC𝔼N
10 8 9 jca NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NA𝔼NC𝔼N
11 4 7 10 3jca NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NNE𝔼ND𝔼NA𝔼NC𝔼N
12 11 adantr NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NABtwnBCABCgrDENE𝔼ND𝔼NA𝔼NC𝔼N
13 axsegcon NE𝔼ND𝔼NA𝔼NC𝔼Nf𝔼NDBtwnEfDfCgrAC
14 12 13 syl NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NABtwnBCABCgrDEf𝔼NDBtwnEfDfCgrAC
15 simprlr NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼Nf𝔼NABtwnBCABCgrDEDBtwnEfACCgrDfABCgrDE
16 simprrr NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼Nf𝔼NABtwnBCABCgrDEDBtwnEfACCgrDfACCgrDf
17 an4 ABtwnBCABCgrDEDBtwnEfACCgrDfABtwnBCDBtwnEfABCgrDEACCgrDf
18 simpl1 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼Nf𝔼NN
19 simpl21 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼Nf𝔼NA𝔼N
20 simpl22 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼Nf𝔼NB𝔼N
21 simpl3l NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼Nf𝔼ND𝔼N
22 simpl3r NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼Nf𝔼NE𝔼N
23 cgrcomlr NA𝔼NB𝔼ND𝔼NE𝔼NABCgrDEBACgrED
24 18 19 20 21 22 23 syl122anc NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼Nf𝔼NABCgrDEBACgrED
25 24 anbi1d NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼Nf𝔼NABCgrDEACCgrDfBACgrEDACCgrDf
26 25 anbi2d NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼Nf𝔼NABtwnBCDBtwnEfABCgrDEACCgrDfABtwnBCDBtwnEfBACgrEDACCgrDf
27 simpl23 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼Nf𝔼NC𝔼N
28 simpr NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼Nf𝔼Nf𝔼N
29 cgrextend NB𝔼NA𝔼NC𝔼NE𝔼ND𝔼Nf𝔼NABtwnBCDBtwnEfBACgrEDACCgrDfBCCgrEf
30 18 20 19 27 22 21 28 29 syl133anc NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼Nf𝔼NABtwnBCDBtwnEfBACgrEDACCgrDfBCCgrEf
31 26 30 sylbid NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼Nf𝔼NABtwnBCDBtwnEfABCgrDEACCgrDfBCCgrEf
32 17 31 biimtrid NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼Nf𝔼NABtwnBCABCgrDEDBtwnEfACCgrDfBCCgrEf
33 32 imp NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼Nf𝔼NABtwnBCABCgrDEDBtwnEfACCgrDfBCCgrEf
34 15 16 33 3jca NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼Nf𝔼NABtwnBCABCgrDEDBtwnEfACCgrDfABCgrDEACCgrDfBCCgrEf
35 34 expr NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼Nf𝔼NABtwnBCABCgrDEDBtwnEfACCgrDfABCgrDEACCgrDfBCCgrEf
36 cgrcom ND𝔼Nf𝔼NA𝔼NC𝔼NDfCgrACACCgrDf
37 18 21 28 19 27 36 syl122anc NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼Nf𝔼NDfCgrACACCgrDf
38 37 anbi2d NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼Nf𝔼NDBtwnEfDfCgrACDBtwnEfACCgrDf
39 38 adantr NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼Nf𝔼NABtwnBCABCgrDEDBtwnEfDfCgrACDBtwnEfACCgrDf
40 simpl2 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼Nf𝔼NA𝔼NB𝔼NC𝔼N
41 brcgr3 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼Nf𝔼NABCCgr3DEfABCgrDEACCgrDfBCCgrEf
42 18 40 21 22 28 41 syl113anc NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼Nf𝔼NABCCgr3DEfABCgrDEACCgrDfBCCgrEf
43 42 adantr NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼Nf𝔼NABtwnBCABCgrDEABCCgr3DEfABCgrDEACCgrDfBCCgrEf
44 35 39 43 3imtr4d NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼Nf𝔼NABtwnBCABCgrDEDBtwnEfDfCgrACABCCgr3DEf
45 44 an32s NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NABtwnBCABCgrDEf𝔼NDBtwnEfDfCgrACABCCgr3DEf
46 45 reximdva NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NABtwnBCABCgrDEf𝔼NDBtwnEfDfCgrACf𝔼NABCCgr3DEf
47 14 46 mpd NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NABtwnBCABCgrDEf𝔼NABCCgr3DEf
48 47 exp32 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NABtwnBCABCgrDEf𝔼NABCCgr3DEf
49 3ancoma A𝔼NB𝔼NC𝔼NB𝔼NA𝔼NC𝔼N
50 btwncom NB𝔼NA𝔼NC𝔼NBBtwnACBBtwnCA
51 49 50 sylan2b NA𝔼NB𝔼NC𝔼NBBtwnACBBtwnCA
52 51 3adant3 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NBBtwnACBBtwnCA
53 simp3 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼ND𝔼NE𝔼N
54 simp22 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NB𝔼N
55 axsegcon ND𝔼NE𝔼NB𝔼NC𝔼Nf𝔼NEBtwnDfEfCgrBC
56 4 53 54 9 55 syl112anc NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼Nf𝔼NEBtwnDfEfCgrBC
57 56 adantr NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NBBtwnACABCgrDEf𝔼NEBtwnDfEfCgrBC
58 cgrextend NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼Nf𝔼NBBtwnACEBtwnDfABCgrDEBCCgrEfACCgrDf
59 18 40 21 22 28 58 syl113anc NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼Nf𝔼NBBtwnACEBtwnDfABCgrDEBCCgrEfACCgrDf
60 simpll ABCgrDEBCCgrEfACCgrDfABCgrDE
61 simpr ABCgrDEBCCgrEfACCgrDfACCgrDf
62 simplr ABCgrDEBCCgrEfACCgrDfBCCgrEf
63 60 61 62 3jca ABCgrDEBCCgrEfACCgrDfABCgrDEACCgrDfBCCgrEf
64 63 ex ABCgrDEBCCgrEfACCgrDfABCgrDEACCgrDfBCCgrEf
65 64 adantl BBtwnACEBtwnDfABCgrDEBCCgrEfACCgrDfABCgrDEACCgrDfBCCgrEf
66 59 65 sylcom NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼Nf𝔼NBBtwnACEBtwnDfABCgrDEBCCgrEfABCgrDEACCgrDfBCCgrEf
67 an4 BBtwnACABCgrDEEBtwnDfEfCgrBCBBtwnACEBtwnDfABCgrDEEfCgrBC
68 cgrcom NE𝔼Nf𝔼NB𝔼NC𝔼NEfCgrBCBCCgrEf
69 18 22 28 20 27 68 syl122anc NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼Nf𝔼NEfCgrBCBCCgrEf
70 69 anbi2d NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼Nf𝔼NABCgrDEEfCgrBCABCgrDEBCCgrEf
71 70 anbi2d NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼Nf𝔼NBBtwnACEBtwnDfABCgrDEEfCgrBCBBtwnACEBtwnDfABCgrDEBCCgrEf
72 67 71 bitrid NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼Nf𝔼NBBtwnACABCgrDEEBtwnDfEfCgrBCBBtwnACEBtwnDfABCgrDEBCCgrEf
73 66 72 42 3imtr4d NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼Nf𝔼NBBtwnACABCgrDEEBtwnDfEfCgrBCABCCgr3DEf
74 73 expdimp NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼Nf𝔼NBBtwnACABCgrDEEBtwnDfEfCgrBCABCCgr3DEf
75 74 an32s NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NBBtwnACABCgrDEf𝔼NEBtwnDfEfCgrBCABCCgr3DEf
76 75 reximdva NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NBBtwnACABCgrDEf𝔼NEBtwnDfEfCgrBCf𝔼NABCCgr3DEf
77 57 76 mpd NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NBBtwnACABCgrDEf𝔼NABCCgr3DEf
78 77 exp32 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NBBtwnACABCgrDEf𝔼NABCCgr3DEf
79 52 78 sylbird NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NBBtwnCAABCgrDEf𝔼NABCCgr3DEf
80 cgrxfr NA𝔼NC𝔼NB𝔼ND𝔼NE𝔼NCBtwnABABCgrDEf𝔼NfBtwnDEACBCgr3DfE
81 4 8 9 54 53 80 syl131anc NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NCBtwnABABCgrDEf𝔼NfBtwnDEACBCgr3DfE
82 cgr3permute1 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼Nf𝔼NABCCgr3DEfACBCgr3DfE
83 18 40 21 22 28 82 syl113anc NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼Nf𝔼NABCCgr3DEfACBCgr3DfE
84 83 biimprd NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼Nf𝔼NACBCgr3DfEABCCgr3DEf
85 84 adantld NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼Nf𝔼NfBtwnDEACBCgr3DfEABCCgr3DEf
86 85 reximdva NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼Nf𝔼NfBtwnDEACBCgr3DfEf𝔼NABCCgr3DEf
87 81 86 syld NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NCBtwnABABCgrDEf𝔼NABCCgr3DEf
88 87 expd NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NCBtwnABABCgrDEf𝔼NABCCgr3DEf
89 48 79 88 3jaod NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NABtwnBCBBtwnCACBtwnABABCgrDEf𝔼NABCCgr3DEf
90 89 impd NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NABtwnBCBBtwnCACBtwnABABCgrDEf𝔼NABCCgr3DEf
91 3 90 sylbid NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NAColinearBCABCgrDEf𝔼NABCCgr3DEf