| Step |
Hyp |
Ref |
Expression |
| 1 |
|
brcolinear |
|
| 2 |
1
|
3adant3 |
|
| 3 |
2
|
anbi1d |
|
| 4 |
|
simp1 |
|
| 5 |
|
simp3r |
|
| 6 |
|
simp3l |
|
| 7 |
5 6
|
jca |
|
| 8 |
|
simp21 |
|
| 9 |
|
simp23 |
|
| 10 |
8 9
|
jca |
|
| 11 |
4 7 10
|
3jca |
|
| 12 |
11
|
adantr |
|
| 13 |
|
axsegcon |
|
| 14 |
12 13
|
syl |
|
| 15 |
|
simprlr |
|
| 16 |
|
simprrr |
|
| 17 |
|
an4 |
|
| 18 |
|
simpl1 |
|
| 19 |
|
simpl21 |
|
| 20 |
|
simpl22 |
|
| 21 |
|
simpl3l |
|
| 22 |
|
simpl3r |
|
| 23 |
|
cgrcomlr |
|
| 24 |
18 19 20 21 22 23
|
syl122anc |
|
| 25 |
24
|
anbi1d |
|
| 26 |
25
|
anbi2d |
|
| 27 |
|
simpl23 |
|
| 28 |
|
simpr |
|
| 29 |
|
cgrextend |
|
| 30 |
18 20 19 27 22 21 28 29
|
syl133anc |
|
| 31 |
26 30
|
sylbid |
|
| 32 |
17 31
|
biimtrid |
|
| 33 |
32
|
imp |
|
| 34 |
15 16 33
|
3jca |
|
| 35 |
34
|
expr |
|
| 36 |
|
cgrcom |
|
| 37 |
18 21 28 19 27 36
|
syl122anc |
|
| 38 |
37
|
anbi2d |
|
| 39 |
38
|
adantr |
|
| 40 |
|
simpl2 |
|
| 41 |
|
brcgr3 |
|
| 42 |
18 40 21 22 28 41
|
syl113anc |
|
| 43 |
42
|
adantr |
|
| 44 |
35 39 43
|
3imtr4d |
|
| 45 |
44
|
an32s |
|
| 46 |
45
|
reximdva |
|
| 47 |
14 46
|
mpd |
|
| 48 |
47
|
exp32 |
|
| 49 |
|
3ancoma |
|
| 50 |
|
btwncom |
|
| 51 |
49 50
|
sylan2b |
|
| 52 |
51
|
3adant3 |
|
| 53 |
|
simp3 |
|
| 54 |
|
simp22 |
|
| 55 |
|
axsegcon |
|
| 56 |
4 53 54 9 55
|
syl112anc |
|
| 57 |
56
|
adantr |
|
| 58 |
|
cgrextend |
|
| 59 |
18 40 21 22 28 58
|
syl113anc |
|
| 60 |
|
simpll |
|
| 61 |
|
simpr |
|
| 62 |
|
simplr |
|
| 63 |
60 61 62
|
3jca |
|
| 64 |
63
|
ex |
|
| 65 |
64
|
adantl |
|
| 66 |
59 65
|
sylcom |
|
| 67 |
|
an4 |
|
| 68 |
|
cgrcom |
|
| 69 |
18 22 28 20 27 68
|
syl122anc |
|
| 70 |
69
|
anbi2d |
|
| 71 |
70
|
anbi2d |
|
| 72 |
67 71
|
bitrid |
|
| 73 |
66 72 42
|
3imtr4d |
|
| 74 |
73
|
expdimp |
|
| 75 |
74
|
an32s |
|
| 76 |
75
|
reximdva |
|
| 77 |
57 76
|
mpd |
|
| 78 |
77
|
exp32 |
|
| 79 |
52 78
|
sylbird |
|
| 80 |
|
cgrxfr |
|
| 81 |
4 8 9 54 53 80
|
syl131anc |
|
| 82 |
|
cgr3permute1 |
|
| 83 |
18 40 21 22 28 82
|
syl113anc |
|
| 84 |
83
|
biimprd |
|
| 85 |
84
|
adantld |
|
| 86 |
85
|
reximdva |
|
| 87 |
81 86
|
syld |
|
| 88 |
87
|
expd |
|
| 89 |
48 79 88
|
3jaod |
|
| 90 |
89
|
impd |
|
| 91 |
3 90
|
sylbid |
|