Metamath Proof Explorer


Theorem linepsubN

Description: A line is a projective subspace. (Contributed by NM, 16-Oct-2011) (New usage is discouraged.)

Ref Expression
Hypotheses linepsub.n N=LinesK
linepsub.s S=PSubSpK
Assertion linepsubN KLatXNXS

Proof

Step Hyp Ref Expression
1 linepsub.n N=LinesK
2 linepsub.s S=PSubSpK
3 ssrab2 cAtomsK|cKajoinKbAtomsK
4 sseq1 X=cAtomsK|cKajoinKbXAtomsKcAtomsK|cKajoinKbAtomsK
5 3 4 mpbiri X=cAtomsK|cKajoinKbXAtomsK
6 5 a1i KLataAtomsKbAtomsKX=cAtomsK|cKajoinKbXAtomsK
7 eqid BaseK=BaseK
8 eqid AtomsK=AtomsK
9 7 8 atbase aAtomsKaBaseK
10 7 8 atbase bAtomsKbBaseK
11 9 10 anim12i aAtomsKbAtomsKaBaseKbBaseK
12 eqid joinK=joinK
13 7 12 latjcl KLataBaseKbBaseKajoinKbBaseK
14 13 3expb KLataBaseKbBaseKajoinKbBaseK
15 11 14 sylan2 KLataAtomsKbAtomsKajoinKbBaseK
16 eleq2 X=cAtomsK|cKajoinKbpXpcAtomsK|cKajoinKb
17 breq1 c=pcKajoinKbpKajoinKb
18 17 elrab pcAtomsK|cKajoinKbpAtomsKpKajoinKb
19 7 8 atbase pAtomsKpBaseK
20 19 anim1i pAtomsKpKajoinKbpBaseKpKajoinKb
21 18 20 sylbi pcAtomsK|cKajoinKbpBaseKpKajoinKb
22 16 21 syl6bi X=cAtomsK|cKajoinKbpXpBaseKpKajoinKb
23 eleq2 X=cAtomsK|cKajoinKbqXqcAtomsK|cKajoinKb
24 breq1 c=qcKajoinKbqKajoinKb
25 24 elrab qcAtomsK|cKajoinKbqAtomsKqKajoinKb
26 7 8 atbase qAtomsKqBaseK
27 26 anim1i qAtomsKqKajoinKbqBaseKqKajoinKb
28 25 27 sylbi qcAtomsK|cKajoinKbqBaseKqKajoinKb
29 23 28 syl6bi X=cAtomsK|cKajoinKbqXqBaseKqKajoinKb
30 22 29 anim12d X=cAtomsK|cKajoinKbpXqXpBaseKpKajoinKbqBaseKqKajoinKb
31 an4 pBaseKpKajoinKbqBaseKqKajoinKbpBaseKqBaseKpKajoinKbqKajoinKb
32 30 31 imbitrdi X=cAtomsK|cKajoinKbpXqXpBaseKqBaseKpKajoinKbqKajoinKb
33 32 imp X=cAtomsK|cKajoinKbpXqXpBaseKqBaseKpKajoinKbqKajoinKb
34 33 anim2i KLatajoinKbBaseKX=cAtomsK|cKajoinKbpXqXKLatajoinKbBaseKpBaseKqBaseKpKajoinKbqKajoinKb
35 34 anassrs KLatajoinKbBaseKX=cAtomsK|cKajoinKbpXqXKLatajoinKbBaseKpBaseKqBaseKpKajoinKbqKajoinKb
36 7 8 atbase rAtomsKrBaseK
37 eqid K=K
38 7 37 12 latjle12 KLatpBaseKqBaseKajoinKbBaseKpKajoinKbqKajoinKbpjoinKqKajoinKb
39 38 biimpd KLatpBaseKqBaseKajoinKbBaseKpKajoinKbqKajoinKbpjoinKqKajoinKb
40 39 3exp2 KLatpBaseKqBaseKajoinKbBaseKpKajoinKbqKajoinKbpjoinKqKajoinKb
41 40 impd KLatpBaseKqBaseKajoinKbBaseKpKajoinKbqKajoinKbpjoinKqKajoinKb
42 41 com23 KLatajoinKbBaseKpBaseKqBaseKpKajoinKbqKajoinKbpjoinKqKajoinKb
43 42 imp43 KLatajoinKbBaseKpBaseKqBaseKpKajoinKbqKajoinKbpjoinKqKajoinKb
44 43 adantr KLatajoinKbBaseKpBaseKqBaseKpKajoinKbqKajoinKbrBaseKpjoinKqKajoinKb
45 7 12 latjcl KLatpBaseKqBaseKpjoinKqBaseK
46 45 3expib KLatpBaseKqBaseKpjoinKqBaseK
47 7 37 lattr KLatrBaseKpjoinKqBaseKajoinKbBaseKrKpjoinKqpjoinKqKajoinKbrKajoinKb
48 47 3exp2 KLatrBaseKpjoinKqBaseKajoinKbBaseKrKpjoinKqpjoinKqKajoinKbrKajoinKb
49 48 com24 KLatajoinKbBaseKpjoinKqBaseKrBaseKrKpjoinKqpjoinKqKajoinKbrKajoinKb
50 46 49 syl5d KLatajoinKbBaseKpBaseKqBaseKrBaseKrKpjoinKqpjoinKqKajoinKbrKajoinKb
51 50 imp41 KLatajoinKbBaseKpBaseKqBaseKrBaseKrKpjoinKqpjoinKqKajoinKbrKajoinKb
52 51 adantlrr KLatajoinKbBaseKpBaseKqBaseKpKajoinKbqKajoinKbrBaseKrKpjoinKqpjoinKqKajoinKbrKajoinKb
53 44 52 mpan2d KLatajoinKbBaseKpBaseKqBaseKpKajoinKbqKajoinKbrBaseKrKpjoinKqrKajoinKb
54 35 36 53 syl2an KLatajoinKbBaseKX=cAtomsK|cKajoinKbpXqXrAtomsKrKpjoinKqrKajoinKb
55 simpr KLatajoinKbBaseKX=cAtomsK|cKajoinKbpXqXrAtomsKrAtomsK
56 54 55 jctild KLatajoinKbBaseKX=cAtomsK|cKajoinKbpXqXrAtomsKrKpjoinKqrAtomsKrKajoinKb
57 eleq2 X=cAtomsK|cKajoinKbrXrcAtomsK|cKajoinKb
58 breq1 c=rcKajoinKbrKajoinKb
59 58 elrab rcAtomsK|cKajoinKbrAtomsKrKajoinKb
60 57 59 bitrdi X=cAtomsK|cKajoinKbrXrAtomsKrKajoinKb
61 60 ad3antlr KLatajoinKbBaseKX=cAtomsK|cKajoinKbpXqXrAtomsKrXrAtomsKrKajoinKb
62 56 61 sylibrd KLatajoinKbBaseKX=cAtomsK|cKajoinKbpXqXrAtomsKrKpjoinKqrX
63 62 ralrimiva KLatajoinKbBaseKX=cAtomsK|cKajoinKbpXqXrAtomsKrKpjoinKqrX
64 63 ralrimivva KLatajoinKbBaseKX=cAtomsK|cKajoinKbpXqXrAtomsKrKpjoinKqrX
65 64 ex KLatajoinKbBaseKX=cAtomsK|cKajoinKbpXqXrAtomsKrKpjoinKqrX
66 15 65 syldan KLataAtomsKbAtomsKX=cAtomsK|cKajoinKbpXqXrAtomsKrKpjoinKqrX
67 6 66 jcad KLataAtomsKbAtomsKX=cAtomsK|cKajoinKbXAtomsKpXqXrAtomsKrKpjoinKqrX
68 67 adantld KLataAtomsKbAtomsKabX=cAtomsK|cKajoinKbXAtomsKpXqXrAtomsKrKpjoinKqrX
69 68 rexlimdvva KLataAtomsKbAtomsKabX=cAtomsK|cKajoinKbXAtomsKpXqXrAtomsKrKpjoinKqrX
70 37 12 8 1 isline KLatXNaAtomsKbAtomsKabX=cAtomsK|cKajoinKb
71 37 12 8 2 ispsubsp KLatXSXAtomsKpXqXrAtomsKrKpjoinKqrX
72 69 70 71 3imtr4d KLatXNXS
73 72 imp KLatXNXS