| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl1 |
|
| 2 |
|
simpr |
|
| 3 |
|
simpl21 |
|
| 4 |
|
simpl22 |
|
| 5 |
|
brcolinear |
|
| 6 |
1 2 3 4 5
|
syl13anc |
|
| 7 |
6
|
adantr |
|
| 8 |
|
olc |
|
| 9 |
8
|
orcd |
|
| 10 |
9
|
a1i |
|
| 11 |
|
simpl3l |
|
| 12 |
11
|
necomd |
|
| 13 |
12
|
adantr |
|
| 14 |
|
simprl |
|
| 15 |
|
simprr |
|
| 16 |
13 14 15
|
3jca |
|
| 17 |
|
simpl23 |
|
| 18 |
|
btwnconn2 |
|
| 19 |
1 4 3 17 2 18
|
syl122anc |
|
| 20 |
19
|
adantr |
|
| 21 |
16 20
|
mpd |
|
| 22 |
21
|
olcd |
|
| 23 |
22
|
expr |
|
| 24 |
|
btwncom |
|
| 25 |
1 4 2 3 24
|
syl13anc |
|
| 26 |
|
orc |
|
| 27 |
26
|
orcd |
|
| 28 |
25 27
|
biimtrdi |
|
| 29 |
28
|
adantr |
|
| 30 |
10 23 29
|
3jaod |
|
| 31 |
7 30
|
sylbid |
|
| 32 |
|
olc |
|
| 33 |
31 32
|
syl6 |
|
| 34 |
|
colineartriv1 |
|
| 35 |
1 3 4 34
|
syl3anc |
|
| 36 |
|
breq1 |
|
| 37 |
35 36
|
syl5ibrcom |
|
| 38 |
37
|
adantr |
|
| 39 |
|
btwncolinear3 |
|
| 40 |
1 3 2 4 39
|
syl13anc |
|
| 41 |
|
btwncolinear5 |
|
| 42 |
1 3 4 2 41
|
syl13anc |
|
| 43 |
40 42
|
jaod |
|
| 44 |
43
|
adantr |
|
| 45 |
|
simpl3r |
|
| 46 |
45
|
adantr |
|
| 47 |
|
simprl |
|
| 48 |
|
simprr |
|
| 49 |
46 47 48
|
3jca |
|
| 50 |
|
btwnouttr |
|
| 51 |
1 4 3 17 2 50
|
syl122anc |
|
| 52 |
51
|
adantr |
|
| 53 |
49 52
|
mpd |
|
| 54 |
|
btwncolinear4 |
|
| 55 |
1 4 2 3 54
|
syl13anc |
|
| 56 |
55
|
adantr |
|
| 57 |
53 56
|
mpd |
|
| 58 |
57
|
expr |
|
| 59 |
|
simprr |
|
| 60 |
1 2 3 17 59
|
btwncomand |
|
| 61 |
|
simprl |
|
| 62 |
1 3 4 17 61
|
btwncomand |
|
| 63 |
1 17 2 3 4 60 62
|
btwnexch3and |
|
| 64 |
|
btwncolinear2 |
|
| 65 |
1 2 4 3 64
|
syl13anc |
|
| 66 |
65
|
adantr |
|
| 67 |
63 66
|
mpd |
|
| 68 |
67
|
expr |
|
| 69 |
58 68
|
jaod |
|
| 70 |
44 69
|
jaod |
|
| 71 |
38 70
|
jaod |
|
| 72 |
33 71
|
impbid |
|
| 73 |
|
pm5.63 |
|
| 74 |
|
df-ne |
|
| 75 |
74
|
anbi1i |
|
| 76 |
|
andi |
|
| 77 |
75 76
|
bitr3i |
|
| 78 |
77
|
orbi2i |
|
| 79 |
73 78
|
bitri |
|
| 80 |
72 79
|
bitrdi |
|
| 81 |
|
broutsideof2 |
|
| 82 |
1 3 4 2 81
|
syl13anc |
|
| 83 |
|
3simpc |
|
| 84 |
|
simpl3l |
|
| 85 |
84
|
necomd |
|
| 86 |
|
simprrl |
|
| 87 |
|
simprrr |
|
| 88 |
85 86 87
|
3jca |
|
| 89 |
88
|
expr |
|
| 90 |
83 89
|
impbid2 |
|
| 91 |
82 90
|
bitrd |
|
| 92 |
|
broutsideof2 |
|
| 93 |
1 3 17 2 92
|
syl13anc |
|
| 94 |
|
3simpc |
|
| 95 |
|
simpl3r |
|
| 96 |
95
|
necomd |
|
| 97 |
|
simprrl |
|
| 98 |
|
simprrr |
|
| 99 |
96 97 98
|
3jca |
|
| 100 |
99
|
expr |
|
| 101 |
94 100
|
impbid2 |
|
| 102 |
93 101
|
bitrd |
|
| 103 |
91 102
|
orbi12d |
|
| 104 |
103
|
adantr |
|
| 105 |
104
|
orbi2d |
|
| 106 |
80 105
|
bitr4d |
|
| 107 |
|
orcom |
|
| 108 |
|
or32 |
|
| 109 |
107 108
|
bitri |
|
| 110 |
106 109
|
bitrdi |
|
| 111 |
110
|
an32s |
|
| 112 |
111
|
rabbidva |
|
| 113 |
|
simp1 |
|
| 114 |
|
simp21 |
|
| 115 |
|
simp22 |
|
| 116 |
|
simp3l |
|
| 117 |
|
fvline2 |
|
| 118 |
113 114 115 116 117
|
syl13anc |
|
| 119 |
118
|
adantr |
|
| 120 |
|
fvray |
|
| 121 |
113 114 115 116 120
|
syl13anc |
|
| 122 |
|
rabsn |
|
| 123 |
114 122
|
syl |
|
| 124 |
123
|
eqcomd |
|
| 125 |
121 124
|
uneq12d |
|
| 126 |
|
simp23 |
|
| 127 |
|
simp3r |
|
| 128 |
|
fvray |
|
| 129 |
113 114 126 127 128
|
syl13anc |
|
| 130 |
125 129
|
uneq12d |
|
| 131 |
130
|
adantr |
|
| 132 |
|
unrab |
|
| 133 |
132
|
uneq1i |
|
| 134 |
|
unrab |
|
| 135 |
133 134
|
eqtri |
|
| 136 |
131 135
|
eqtrdi |
|
| 137 |
112 119 136
|
3eqtr4d |
|
| 138 |
137
|
ex |
|