Description: If the kernel and range of a homomorphism of left modules are finitely generated, then so is the domain. (Contributed by Stefan O'Rear, 1-Jan-2015) (Revised by Stefan O'Rear, 6-May-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lmhmfgsplit.z | |
|
lmhmfgsplit.k | |
||
lmhmfgsplit.u | |
||
lmhmfgsplit.v | |
||
Assertion | lmhmfgsplit | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmhmfgsplit.z | |
|
2 | lmhmfgsplit.k | |
|
3 | lmhmfgsplit.u | |
|
4 | lmhmfgsplit.v | |
|
5 | simp3 | |
|
6 | lmhmlmod2 | |
|
7 | 6 | 3ad2ant1 | |
8 | lmhmrnlss | |
|
9 | 8 | 3ad2ant1 | |
10 | eqid | |
|
11 | eqid | |
|
12 | 4 10 11 | islssfg | |
13 | 7 9 12 | syl2anc | |
14 | 5 13 | mpbid | |
15 | simpl1 | |
|
16 | eqid | |
|
17 | eqid | |
|
18 | 16 17 | lmhmf | |
19 | ffn | |
|
20 | 15 18 19 | 3syl | |
21 | elpwi | |
|
22 | 21 | ad2antrl | |
23 | simprrl | |
|
24 | fipreima | |
|
25 | 20 22 23 24 | syl3anc | |
26 | eqid | |
|
27 | eqid | |
|
28 | simpll1 | |
|
29 | lmhmlmod1 | |
|
30 | 29 | 3ad2ant1 | |
31 | 30 | ad2antrr | |
32 | inss1 | |
|
33 | 32 | sseli | |
34 | elpwi | |
|
35 | 33 34 | syl | |
36 | 35 | ad2antrl | |
37 | eqid | |
|
38 | 16 26 37 | lspcl | |
39 | 31 36 38 | syl2anc | |
40 | 16 37 11 | lmhmlsp | |
41 | 28 36 40 | syl2anc | |
42 | fveq2 | |
|
43 | 42 | ad2antll | |
44 | simp2rr | |
|
45 | 44 | 3expa | |
46 | 41 43 45 | 3eqtrd | |
47 | 26 27 1 2 16 28 39 46 | kercvrlsm | |
48 | 47 | oveq2d | |
49 | 16 | ressid | |
50 | 30 49 | syl | |
51 | 50 | ad2antrr | |
52 | 48 51 | eqtr2d | |
53 | eqid | |
|
54 | eqid | |
|
55 | 2 1 26 | lmhmkerlss | |
56 | 55 | 3ad2ant1 | |
57 | 56 | ad2antrr | |
58 | simpll2 | |
|
59 | inss2 | |
|
60 | 59 | sseli | |
61 | 60 | ad2antrl | |
62 | 37 16 53 | islssfgi | |
63 | 31 36 61 62 | syl3anc | |
64 | 26 27 3 53 54 31 57 39 58 63 | lsmfgcl | |
65 | 52 64 | eqeltrd | |
66 | 25 65 | rexlimddv | |
67 | 14 66 | rexlimddv | |