Step |
Hyp |
Ref |
Expression |
1 |
|
lmod1.m |
|
2 |
|
eqid |
|
3 |
2
|
grp1 |
|
4 |
|
fvex |
|
5 |
|
snex |
|
6 |
2
|
grpbase |
|
7 |
5 6
|
ax-mp |
|
8 |
7
|
opeq2i |
|
9 |
|
tpeq1 |
|
10 |
8 9
|
ax-mp |
|
11 |
10
|
uneq1i |
|
12 |
1 11
|
eqtri |
|
13 |
12
|
lmodbase |
|
14 |
4 13
|
ax-mp |
|
15 |
14
|
eqcomi |
|
16 |
|
fvex |
|
17 |
|
snex |
|
18 |
2
|
grpplusg |
|
19 |
17 18
|
ax-mp |
|
20 |
19
|
opeq2i |
|
21 |
|
tpeq2 |
|
22 |
20 21
|
ax-mp |
|
23 |
22
|
uneq1i |
|
24 |
1 23
|
eqtri |
|
25 |
24
|
lmodplusg |
|
26 |
16 25
|
ax-mp |
|
27 |
26
|
eqcomi |
|
28 |
15 27
|
grpprop |
|
29 |
3 28
|
sylibr |
|
30 |
29
|
adantr |
|
31 |
1
|
lmodsca |
|
32 |
31
|
eqcomd |
|
33 |
32
|
adantl |
|
34 |
|
simpr |
|
35 |
33 34
|
eqeltrd |
|
36 |
33
|
fveq2d |
|
37 |
36
|
eleq2d |
|
38 |
36
|
eleq2d |
|
39 |
37 38
|
anbi12d |
|
40 |
|
simpll |
|
41 |
|
simplr |
|
42 |
|
simprr |
|
43 |
40 41 42
|
3jca |
|
44 |
1
|
lmod1lem1 |
|
45 |
43 44
|
syl |
|
46 |
1
|
lmod1lem2 |
|
47 |
43 46
|
syl |
|
48 |
1
|
lmod1lem3 |
|
49 |
45 47 48
|
3jca |
|
50 |
1
|
lmod1lem4 |
|
51 |
1
|
lmod1lem5 |
|
52 |
51
|
adantr |
|
53 |
49 50 52
|
jca32 |
|
54 |
53
|
ex |
|
55 |
39 54
|
sylbid |
|
56 |
55
|
ralrimivv |
|
57 |
|
oveq2 |
|
58 |
57
|
oveq2d |
|
59 |
|
oveq2 |
|
60 |
59
|
oveq2d |
|
61 |
58 60
|
eqeq12d |
|
62 |
61
|
3anbi2d |
|
63 |
62
|
anbi1d |
|
64 |
63
|
ralbidv |
|
65 |
64
|
ralsng |
|
66 |
65
|
adantr |
|
67 |
|
oveq2 |
|
68 |
67
|
eleq1d |
|
69 |
|
oveq1 |
|
70 |
69
|
oveq2d |
|
71 |
67
|
oveq1d |
|
72 |
70 71
|
eqeq12d |
|
73 |
|
oveq2 |
|
74 |
|
oveq2 |
|
75 |
74 67
|
oveq12d |
|
76 |
73 75
|
eqeq12d |
|
77 |
68 72 76
|
3anbi123d |
|
78 |
|
oveq2 |
|
79 |
67
|
oveq2d |
|
80 |
78 79
|
eqeq12d |
|
81 |
|
oveq2 |
|
82 |
|
id |
|
83 |
81 82
|
eqeq12d |
|
84 |
80 83
|
anbi12d |
|
85 |
77 84
|
anbi12d |
|
86 |
85
|
ralsng |
|
87 |
86
|
adantr |
|
88 |
66 87
|
bitrd |
|
89 |
88
|
2ralbidv |
|
90 |
56 89
|
mpbird |
|
91 |
1
|
lmodbase |
|
92 |
5 91
|
ax-mp |
|
93 |
|
eqid |
|
94 |
|
eqid |
|
95 |
|
eqid |
|
96 |
|
eqid |
|
97 |
|
eqid |
|
98 |
|
eqid |
|
99 |
|
eqid |
|
100 |
92 93 94 95 96 97 98 99
|
islmod |
|
101 |
30 35 90 100
|
syl3anbrc |
|