Metamath Proof Explorer


Theorem lmod1

Description: The (smallest) structure representing azero module over an arbitrary ring. (Contributed by AV, 29-Apr-2019)

Ref Expression
Hypothesis lmod1.m M=BasendxI+ndxIIIScalarndxRndxxBaseR,yIy
Assertion lmod1 IVRRingMLMod

Proof

Step Hyp Ref Expression
1 lmod1.m M=BasendxI+ndxIIIScalarndxRndxxBaseR,yIy
2 eqid BasendxI+ndxIII=BasendxI+ndxIII
3 2 grp1 IVBasendxI+ndxIIIGrp
4 fvex BaseBasendxI+ndxIIIV
5 snex IV
6 2 grpbase IVI=BaseBasendxI+ndxIII
7 5 6 ax-mp I=BaseBasendxI+ndxIII
8 7 opeq2i BasendxI=BasendxBaseBasendxI+ndxIII
9 tpeq1 BasendxI=BasendxBaseBasendxI+ndxIIIBasendxI+ndxIIIScalarndxR=BasendxBaseBasendxI+ndxIII+ndxIIIScalarndxR
10 8 9 ax-mp BasendxI+ndxIIIScalarndxR=BasendxBaseBasendxI+ndxIII+ndxIIIScalarndxR
11 10 uneq1i BasendxI+ndxIIIScalarndxRndxxBaseR,yIy=BasendxBaseBasendxI+ndxIII+ndxIIIScalarndxRndxxBaseR,yIy
12 1 11 eqtri M=BasendxBaseBasendxI+ndxIII+ndxIIIScalarndxRndxxBaseR,yIy
13 12 lmodbase BaseBasendxI+ndxIIIVBaseBasendxI+ndxIII=BaseM
14 4 13 ax-mp BaseBasendxI+ndxIII=BaseM
15 14 eqcomi BaseM=BaseBasendxI+ndxIII
16 fvex +BasendxI+ndxIIIV
17 snex IIIV
18 2 grpplusg IIIVIII=+BasendxI+ndxIII
19 17 18 ax-mp III=+BasendxI+ndxIII
20 19 opeq2i +ndxIII=+ndx+BasendxI+ndxIII
21 tpeq2 +ndxIII=+ndx+BasendxI+ndxIIIBasendxI+ndxIIIScalarndxR=BasendxI+ndx+BasendxI+ndxIIIScalarndxR
22 20 21 ax-mp BasendxI+ndxIIIScalarndxR=BasendxI+ndx+BasendxI+ndxIIIScalarndxR
23 22 uneq1i BasendxI+ndxIIIScalarndxRndxxBaseR,yIy=BasendxI+ndx+BasendxI+ndxIIIScalarndxRndxxBaseR,yIy
24 1 23 eqtri M=BasendxI+ndx+BasendxI+ndxIIIScalarndxRndxxBaseR,yIy
25 24 lmodplusg +BasendxI+ndxIIIV+BasendxI+ndxIII=+M
26 16 25 ax-mp +BasendxI+ndxIII=+M
27 26 eqcomi +M=+BasendxI+ndxIII
28 15 27 grpprop MGrpBasendxI+ndxIIIGrp
29 3 28 sylibr IVMGrp
30 29 adantr IVRRingMGrp
31 1 lmodsca RRingR=ScalarM
32 31 eqcomd RRingScalarM=R
33 32 adantl IVRRingScalarM=R
34 simpr IVRRingRRing
35 33 34 eqeltrd IVRRingScalarMRing
36 33 fveq2d IVRRingBaseScalarM=BaseR
37 36 eleq2d IVRRingqBaseScalarMqBaseR
38 36 eleq2d IVRRingrBaseScalarMrBaseR
39 37 38 anbi12d IVRRingqBaseScalarMrBaseScalarMqBaseRrBaseR
40 simpll IVRRingqBaseRrBaseRIV
41 simplr IVRRingqBaseRrBaseRRRing
42 simprr IVRRingqBaseRrBaseRrBaseR
43 40 41 42 3jca IVRRingqBaseRrBaseRIVRRingrBaseR
44 1 lmod1lem1 IVRRingrBaseRrMII
45 43 44 syl IVRRingqBaseRrBaseRrMII
46 1 lmod1lem2 IVRRingrBaseRrMI+MI=rMI+MrMI
47 43 46 syl IVRRingqBaseRrBaseRrMI+MI=rMI+MrMI
48 1 lmod1lem3 IVRRingqBaseRrBaseRq+ScalarMrMI=qMI+MrMI
49 45 47 48 3jca IVRRingqBaseRrBaseRrMIIrMI+MI=rMI+MrMIq+ScalarMrMI=qMI+MrMI
50 1 lmod1lem4 IVRRingqBaseRrBaseRqScalarMrMI=qMrMI
51 1 lmod1lem5 IVRRing1ScalarMMI=I
52 51 adantr IVRRingqBaseRrBaseR1ScalarMMI=I
53 49 50 52 jca32 IVRRingqBaseRrBaseRrMIIrMI+MI=rMI+MrMIq+ScalarMrMI=qMI+MrMIqScalarMrMI=qMrMI1ScalarMMI=I
54 53 ex IVRRingqBaseRrBaseRrMIIrMI+MI=rMI+MrMIq+ScalarMrMI=qMI+MrMIqScalarMrMI=qMrMI1ScalarMMI=I
55 39 54 sylbid IVRRingqBaseScalarMrBaseScalarMrMIIrMI+MI=rMI+MrMIq+ScalarMrMI=qMI+MrMIqScalarMrMI=qMrMI1ScalarMMI=I
56 55 ralrimivv IVRRingqBaseScalarMrBaseScalarMrMIIrMI+MI=rMI+MrMIq+ScalarMrMI=qMI+MrMIqScalarMrMI=qMrMI1ScalarMMI=I
57 oveq2 x=Iw+Mx=w+MI
58 57 oveq2d x=IrMw+Mx=rMw+MI
59 oveq2 x=IrMx=rMI
60 59 oveq2d x=IrMw+MrMx=rMw+MrMI
61 58 60 eqeq12d x=IrMw+Mx=rMw+MrMxrMw+MI=rMw+MrMI
62 61 3anbi2d x=IrMwIrMw+Mx=rMw+MrMxq+ScalarMrMw=qMw+MrMwrMwIrMw+MI=rMw+MrMIq+ScalarMrMw=qMw+MrMw
63 62 anbi1d x=IrMwIrMw+Mx=rMw+MrMxq+ScalarMrMw=qMw+MrMwqScalarMrMw=qMrMw1ScalarMMw=wrMwIrMw+MI=rMw+MrMIq+ScalarMrMw=qMw+MrMwqScalarMrMw=qMrMw1ScalarMMw=w
64 63 ralbidv x=IwIrMwIrMw+Mx=rMw+MrMxq+ScalarMrMw=qMw+MrMwqScalarMrMw=qMrMw1ScalarMMw=wwIrMwIrMw+MI=rMw+MrMIq+ScalarMrMw=qMw+MrMwqScalarMrMw=qMrMw1ScalarMMw=w
65 64 ralsng IVxIwIrMwIrMw+Mx=rMw+MrMxq+ScalarMrMw=qMw+MrMwqScalarMrMw=qMrMw1ScalarMMw=wwIrMwIrMw+MI=rMw+MrMIq+ScalarMrMw=qMw+MrMwqScalarMrMw=qMrMw1ScalarMMw=w
66 65 adantr IVRRingxIwIrMwIrMw+Mx=rMw+MrMxq+ScalarMrMw=qMw+MrMwqScalarMrMw=qMrMw1ScalarMMw=wwIrMwIrMw+MI=rMw+MrMIq+ScalarMrMw=qMw+MrMwqScalarMrMw=qMrMw1ScalarMMw=w
67 oveq2 w=IrMw=rMI
68 67 eleq1d w=IrMwIrMII
69 oveq1 w=Iw+MI=I+MI
70 69 oveq2d w=IrMw+MI=rMI+MI
71 67 oveq1d w=IrMw+MrMI=rMI+MrMI
72 70 71 eqeq12d w=IrMw+MI=rMw+MrMIrMI+MI=rMI+MrMI
73 oveq2 w=Iq+ScalarMrMw=q+ScalarMrMI
74 oveq2 w=IqMw=qMI
75 74 67 oveq12d w=IqMw+MrMw=qMI+MrMI
76 73 75 eqeq12d w=Iq+ScalarMrMw=qMw+MrMwq+ScalarMrMI=qMI+MrMI
77 68 72 76 3anbi123d w=IrMwIrMw+MI=rMw+MrMIq+ScalarMrMw=qMw+MrMwrMIIrMI+MI=rMI+MrMIq+ScalarMrMI=qMI+MrMI
78 oveq2 w=IqScalarMrMw=qScalarMrMI
79 67 oveq2d w=IqMrMw=qMrMI
80 78 79 eqeq12d w=IqScalarMrMw=qMrMwqScalarMrMI=qMrMI
81 oveq2 w=I1ScalarMMw=1ScalarMMI
82 id w=Iw=I
83 81 82 eqeq12d w=I1ScalarMMw=w1ScalarMMI=I
84 80 83 anbi12d w=IqScalarMrMw=qMrMw1ScalarMMw=wqScalarMrMI=qMrMI1ScalarMMI=I
85 77 84 anbi12d w=IrMwIrMw+MI=rMw+MrMIq+ScalarMrMw=qMw+MrMwqScalarMrMw=qMrMw1ScalarMMw=wrMIIrMI+MI=rMI+MrMIq+ScalarMrMI=qMI+MrMIqScalarMrMI=qMrMI1ScalarMMI=I
86 85 ralsng IVwIrMwIrMw+MI=rMw+MrMIq+ScalarMrMw=qMw+MrMwqScalarMrMw=qMrMw1ScalarMMw=wrMIIrMI+MI=rMI+MrMIq+ScalarMrMI=qMI+MrMIqScalarMrMI=qMrMI1ScalarMMI=I
87 86 adantr IVRRingwIrMwIrMw+MI=rMw+MrMIq+ScalarMrMw=qMw+MrMwqScalarMrMw=qMrMw1ScalarMMw=wrMIIrMI+MI=rMI+MrMIq+ScalarMrMI=qMI+MrMIqScalarMrMI=qMrMI1ScalarMMI=I
88 66 87 bitrd IVRRingxIwIrMwIrMw+Mx=rMw+MrMxq+ScalarMrMw=qMw+MrMwqScalarMrMw=qMrMw1ScalarMMw=wrMIIrMI+MI=rMI+MrMIq+ScalarMrMI=qMI+MrMIqScalarMrMI=qMrMI1ScalarMMI=I
89 88 2ralbidv IVRRingqBaseScalarMrBaseScalarMxIwIrMwIrMw+Mx=rMw+MrMxq+ScalarMrMw=qMw+MrMwqScalarMrMw=qMrMw1ScalarMMw=wqBaseScalarMrBaseScalarMrMIIrMI+MI=rMI+MrMIq+ScalarMrMI=qMI+MrMIqScalarMrMI=qMrMI1ScalarMMI=I
90 56 89 mpbird IVRRingqBaseScalarMrBaseScalarMxIwIrMwIrMw+Mx=rMw+MrMxq+ScalarMrMw=qMw+MrMwqScalarMrMw=qMrMw1ScalarMMw=w
91 1 lmodbase IVI=BaseM
92 5 91 ax-mp I=BaseM
93 eqid +M=+M
94 eqid M=M
95 eqid ScalarM=ScalarM
96 eqid BaseScalarM=BaseScalarM
97 eqid +ScalarM=+ScalarM
98 eqid ScalarM=ScalarM
99 eqid 1ScalarM=1ScalarM
100 92 93 94 95 96 97 98 99 islmod MLModMGrpScalarMRingqBaseScalarMrBaseScalarMxIwIrMwIrMw+Mx=rMw+MrMxq+ScalarMrMw=qMw+MrMwqScalarMrMw=qMrMw1ScalarMMw=w
101 30 35 90 100 syl3anbrc IVRRingMLMod