Metamath Proof Explorer


Theorem lmod1

Description: The (smallest) structure representing azero module over an arbitrary ring. (Contributed by AV, 29-Apr-2019)

Ref Expression
Hypothesis lmod1.m M = Base ndx I + ndx I I I Scalar ndx R ndx x Base R , y I y
Assertion lmod1 I V R Ring M LMod

Proof

Step Hyp Ref Expression
1 lmod1.m M = Base ndx I + ndx I I I Scalar ndx R ndx x Base R , y I y
2 eqid Base ndx I + ndx I I I = Base ndx I + ndx I I I
3 2 grp1 I V Base ndx I + ndx I I I Grp
4 fvex Base Base ndx I + ndx I I I V
5 snex I V
6 2 grpbase I V I = Base Base ndx I + ndx I I I
7 5 6 ax-mp I = Base Base ndx I + ndx I I I
8 7 opeq2i Base ndx I = Base ndx Base Base ndx I + ndx I I I
9 tpeq1 Base ndx I = Base ndx Base Base ndx I + ndx I I I Base ndx I + ndx I I I Scalar ndx R = Base ndx Base Base ndx I + ndx I I I + ndx I I I Scalar ndx R
10 8 9 ax-mp Base ndx I + ndx I I I Scalar ndx R = Base ndx Base Base ndx I + ndx I I I + ndx I I I Scalar ndx R
11 10 uneq1i Base ndx I + ndx I I I Scalar ndx R ndx x Base R , y I y = Base ndx Base Base ndx I + ndx I I I + ndx I I I Scalar ndx R ndx x Base R , y I y
12 1 11 eqtri M = Base ndx Base Base ndx I + ndx I I I + ndx I I I Scalar ndx R ndx x Base R , y I y
13 12 lmodbase Base Base ndx I + ndx I I I V Base Base ndx I + ndx I I I = Base M
14 4 13 ax-mp Base Base ndx I + ndx I I I = Base M
15 14 eqcomi Base M = Base Base ndx I + ndx I I I
16 fvex + Base ndx I + ndx I I I V
17 snex I I I V
18 2 grpplusg I I I V I I I = + Base ndx I + ndx I I I
19 17 18 ax-mp I I I = + Base ndx I + ndx I I I
20 19 opeq2i + ndx I I I = + ndx + Base ndx I + ndx I I I
21 tpeq2 + ndx I I I = + ndx + Base ndx I + ndx I I I Base ndx I + ndx I I I Scalar ndx R = Base ndx I + ndx + Base ndx I + ndx I I I Scalar ndx R
22 20 21 ax-mp Base ndx I + ndx I I I Scalar ndx R = Base ndx I + ndx + Base ndx I + ndx I I I Scalar ndx R
23 22 uneq1i Base ndx I + ndx I I I Scalar ndx R ndx x Base R , y I y = Base ndx I + ndx + Base ndx I + ndx I I I Scalar ndx R ndx x Base R , y I y
24 1 23 eqtri M = Base ndx I + ndx + Base ndx I + ndx I I I Scalar ndx R ndx x Base R , y I y
25 24 lmodplusg + Base ndx I + ndx I I I V + Base ndx I + ndx I I I = + M
26 16 25 ax-mp + Base ndx I + ndx I I I = + M
27 26 eqcomi + M = + Base ndx I + ndx I I I
28 15 27 grpprop M Grp Base ndx I + ndx I I I Grp
29 3 28 sylibr I V M Grp
30 29 adantr I V R Ring M Grp
31 1 lmodsca R Ring R = Scalar M
32 31 eqcomd R Ring Scalar M = R
33 32 adantl I V R Ring Scalar M = R
34 simpr I V R Ring R Ring
35 33 34 eqeltrd I V R Ring Scalar M Ring
36 33 fveq2d I V R Ring Base Scalar M = Base R
37 36 eleq2d I V R Ring q Base Scalar M q Base R
38 36 eleq2d I V R Ring r Base Scalar M r Base R
39 37 38 anbi12d I V R Ring q Base Scalar M r Base Scalar M q Base R r Base R
40 simpll I V R Ring q Base R r Base R I V
41 simplr I V R Ring q Base R r Base R R Ring
42 simprr I V R Ring q Base R r Base R r Base R
43 40 41 42 3jca I V R Ring q Base R r Base R I V R Ring r Base R
44 1 lmod1lem1 I V R Ring r Base R r M I I
45 43 44 syl I V R Ring q Base R r Base R r M I I
46 1 lmod1lem2 I V R Ring r Base R r M I + M I = r M I + M r M I
47 43 46 syl I V R Ring q Base R r Base R r M I + M I = r M I + M r M I
48 1 lmod1lem3 I V R Ring q Base R r Base R q + Scalar M r M I = q M I + M r M I
49 45 47 48 3jca I V R Ring q Base R r Base R r M I I r M I + M I = r M I + M r M I q + Scalar M r M I = q M I + M r M I
50 1 lmod1lem4 I V R Ring q Base R r Base R q Scalar M r M I = q M r M I
51 1 lmod1lem5 I V R Ring 1 Scalar M M I = I
52 51 adantr I V R Ring q Base R r Base R 1 Scalar M M I = I
53 49 50 52 jca32 I V R Ring q Base R r Base R r M I I r M I + M I = r M I + M r M I q + Scalar M r M I = q M I + M r M I q Scalar M r M I = q M r M I 1 Scalar M M I = I
54 53 ex I V R Ring q Base R r Base R r M I I r M I + M I = r M I + M r M I q + Scalar M r M I = q M I + M r M I q Scalar M r M I = q M r M I 1 Scalar M M I = I
55 39 54 sylbid I V R Ring q Base Scalar M r Base Scalar M r M I I r M I + M I = r M I + M r M I q + Scalar M r M I = q M I + M r M I q Scalar M r M I = q M r M I 1 Scalar M M I = I
56 55 ralrimivv I V R Ring q Base Scalar M r Base Scalar M r M I I r M I + M I = r M I + M r M I q + Scalar M r M I = q M I + M r M I q Scalar M r M I = q M r M I 1 Scalar M M I = I
57 oveq2 x = I w + M x = w + M I
58 57 oveq2d x = I r M w + M x = r M w + M I
59 oveq2 x = I r M x = r M I
60 59 oveq2d x = I r M w + M r M x = r M w + M r M I
61 58 60 eqeq12d x = I r M w + M x = r M w + M r M x r M w + M I = r M w + M r M I
62 61 3anbi2d x = I r M w I r M w + M x = r M w + M r M x q + Scalar M r M w = q M w + M r M w r M w I r M w + M I = r M w + M r M I q + Scalar M r M w = q M w + M r M w
63 62 anbi1d x = I r M w I r M w + M x = r M w + M r M x q + Scalar M r M w = q M w + M r M w q Scalar M r M w = q M r M w 1 Scalar M M w = w r M w I r M w + M I = r M w + M r M I q + Scalar M r M w = q M w + M r M w q Scalar M r M w = q M r M w 1 Scalar M M w = w
64 63 ralbidv x = I w I r M w I r M w + M x = r M w + M r M x q + Scalar M r M w = q M w + M r M w q Scalar M r M w = q M r M w 1 Scalar M M w = w w I r M w I r M w + M I = r M w + M r M I q + Scalar M r M w = q M w + M r M w q Scalar M r M w = q M r M w 1 Scalar M M w = w
65 64 ralsng I V x I w I r M w I r M w + M x = r M w + M r M x q + Scalar M r M w = q M w + M r M w q Scalar M r M w = q M r M w 1 Scalar M M w = w w I r M w I r M w + M I = r M w + M r M I q + Scalar M r M w = q M w + M r M w q Scalar M r M w = q M r M w 1 Scalar M M w = w
66 65 adantr I V R Ring x I w I r M w I r M w + M x = r M w + M r M x q + Scalar M r M w = q M w + M r M w q Scalar M r M w = q M r M w 1 Scalar M M w = w w I r M w I r M w + M I = r M w + M r M I q + Scalar M r M w = q M w + M r M w q Scalar M r M w = q M r M w 1 Scalar M M w = w
67 oveq2 w = I r M w = r M I
68 67 eleq1d w = I r M w I r M I I
69 oveq1 w = I w + M I = I + M I
70 69 oveq2d w = I r M w + M I = r M I + M I
71 67 oveq1d w = I r M w + M r M I = r M I + M r M I
72 70 71 eqeq12d w = I r M w + M I = r M w + M r M I r M I + M I = r M I + M r M I
73 oveq2 w = I q + Scalar M r M w = q + Scalar M r M I
74 oveq2 w = I q M w = q M I
75 74 67 oveq12d w = I q M w + M r M w = q M I + M r M I
76 73 75 eqeq12d w = I q + Scalar M r M w = q M w + M r M w q + Scalar M r M I = q M I + M r M I
77 68 72 76 3anbi123d w = I r M w I r M w + M I = r M w + M r M I q + Scalar M r M w = q M w + M r M w r M I I r M I + M I = r M I + M r M I q + Scalar M r M I = q M I + M r M I
78 oveq2 w = I q Scalar M r M w = q Scalar M r M I
79 67 oveq2d w = I q M r M w = q M r M I
80 78 79 eqeq12d w = I q Scalar M r M w = q M r M w q Scalar M r M I = q M r M I
81 oveq2 w = I 1 Scalar M M w = 1 Scalar M M I
82 id w = I w = I
83 81 82 eqeq12d w = I 1 Scalar M M w = w 1 Scalar M M I = I
84 80 83 anbi12d w = I q Scalar M r M w = q M r M w 1 Scalar M M w = w q Scalar M r M I = q M r M I 1 Scalar M M I = I
85 77 84 anbi12d w = I r M w I r M w + M I = r M w + M r M I q + Scalar M r M w = q M w + M r M w q Scalar M r M w = q M r M w 1 Scalar M M w = w r M I I r M I + M I = r M I + M r M I q + Scalar M r M I = q M I + M r M I q Scalar M r M I = q M r M I 1 Scalar M M I = I
86 85 ralsng I V w I r M w I r M w + M I = r M w + M r M I q + Scalar M r M w = q M w + M r M w q Scalar M r M w = q M r M w 1 Scalar M M w = w r M I I r M I + M I = r M I + M r M I q + Scalar M r M I = q M I + M r M I q Scalar M r M I = q M r M I 1 Scalar M M I = I
87 86 adantr I V R Ring w I r M w I r M w + M I = r M w + M r M I q + Scalar M r M w = q M w + M r M w q Scalar M r M w = q M r M w 1 Scalar M M w = w r M I I r M I + M I = r M I + M r M I q + Scalar M r M I = q M I + M r M I q Scalar M r M I = q M r M I 1 Scalar M M I = I
88 66 87 bitrd I V R Ring x I w I r M w I r M w + M x = r M w + M r M x q + Scalar M r M w = q M w + M r M w q Scalar M r M w = q M r M w 1 Scalar M M w = w r M I I r M I + M I = r M I + M r M I q + Scalar M r M I = q M I + M r M I q Scalar M r M I = q M r M I 1 Scalar M M I = I
89 88 2ralbidv I V R Ring q Base Scalar M r Base Scalar M x I w I r M w I r M w + M x = r M w + M r M x q + Scalar M r M w = q M w + M r M w q Scalar M r M w = q M r M w 1 Scalar M M w = w q Base Scalar M r Base Scalar M r M I I r M I + M I = r M I + M r M I q + Scalar M r M I = q M I + M r M I q Scalar M r M I = q M r M I 1 Scalar M M I = I
90 56 89 mpbird I V R Ring q Base Scalar M r Base Scalar M x I w I r M w I r M w + M x = r M w + M r M x q + Scalar M r M w = q M w + M r M w q Scalar M r M w = q M r M w 1 Scalar M M w = w
91 1 lmodbase I V I = Base M
92 5 91 ax-mp I = Base M
93 eqid + M = + M
94 eqid M = M
95 eqid Scalar M = Scalar M
96 eqid Base Scalar M = Base Scalar M
97 eqid + Scalar M = + Scalar M
98 eqid Scalar M = Scalar M
99 eqid 1 Scalar M = 1 Scalar M
100 92 93 94 95 96 97 98 99 islmod M LMod M Grp Scalar M Ring q Base Scalar M r Base Scalar M x I w I r M w I r M w + M x = r M w + M r M x q + Scalar M r M w = q M w + M r M w q Scalar M r M w = q M r M w 1 Scalar M M w = w
101 30 35 90 100 syl3anbrc I V R Ring M LMod