Description: Two subspaces in a proper subset relationship imply the existence of an atom less than or equal to one but not the other. ( chpssati analog.) (Contributed by NM, 11-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lpssat.s | |
|
lpssat.a | |
||
lpssat.w | |
||
lpssat.t | |
||
lpssat.u | |
||
lpssat.l | |
||
Assertion | lpssat | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lpssat.s | |
|
2 | lpssat.a | |
|
3 | lpssat.w | |
|
4 | lpssat.t | |
|
5 | lpssat.u | |
|
6 | lpssat.l | |
|
7 | dfpss3 | |
|
8 | 7 | simprbi | |
9 | 6 8 | syl | |
10 | iman | |
|
11 | 10 | ralbii | |
12 | ss2rab | |
|
13 | 3 | adantr | |
14 | 1 2 | lsatlss | |
15 | rabss2 | |
|
16 | uniss | |
|
17 | 3 14 15 16 | 4syl | |
18 | unimax | |
|
19 | 4 18 | syl | |
20 | eqid | |
|
21 | 20 1 | lssss | |
22 | 4 21 | syl | |
23 | 19 22 | eqsstrd | |
24 | 17 23 | sstrd | |
25 | 24 | adantr | |
26 | uniss | |
|
27 | 26 | adantl | |
28 | eqid | |
|
29 | 20 28 | lspss | |
30 | 13 25 27 29 | syl3anc | |
31 | 1 28 2 | lssats | |
32 | 3 5 31 | syl2anc | |
33 | 32 | adantr | |
34 | 1 28 2 | lssats | |
35 | 3 4 34 | syl2anc | |
36 | 35 | adantr | |
37 | 30 33 36 | 3sstr4d | |
38 | 37 | ex | |
39 | 12 38 | biimtrrid | |
40 | 11 39 | biimtrrid | |
41 | 9 40 | mtod | |
42 | dfrex2 | |
|
43 | 41 42 | sylibr | |