Metamath Proof Explorer


Theorem lpssat

Description: Two subspaces in a proper subset relationship imply the existence of an atom less than or equal to one but not the other. ( chpssati analog.) (Contributed by NM, 11-Jan-2015)

Ref Expression
Hypotheses lpssat.s S=LSubSpW
lpssat.a A=LSAtomsW
lpssat.w φWLMod
lpssat.t φTS
lpssat.u φUS
lpssat.l φTU
Assertion lpssat φqAqU¬qT

Proof

Step Hyp Ref Expression
1 lpssat.s S=LSubSpW
2 lpssat.a A=LSAtomsW
3 lpssat.w φWLMod
4 lpssat.t φTS
5 lpssat.u φUS
6 lpssat.l φTU
7 dfpss3 TUTU¬UT
8 7 simprbi TU¬UT
9 6 8 syl φ¬UT
10 iman qUqT¬qU¬qT
11 10 ralbii qAqUqTqA¬qU¬qT
12 ss2rab qA|qUqA|qTqAqUqT
13 3 adantr φqA|qUqA|qTWLMod
14 1 2 lsatlss WLModAS
15 rabss2 ASqA|qTqS|qT
16 uniss qA|qTqS|qTqA|qTqS|qT
17 3 14 15 16 4syl φqA|qTqS|qT
18 unimax TSqS|qT=T
19 4 18 syl φqS|qT=T
20 eqid BaseW=BaseW
21 20 1 lssss TSTBaseW
22 4 21 syl φTBaseW
23 19 22 eqsstrd φqS|qTBaseW
24 17 23 sstrd φqA|qTBaseW
25 24 adantr φqA|qUqA|qTqA|qTBaseW
26 uniss qA|qUqA|qTqA|qUqA|qT
27 26 adantl φqA|qUqA|qTqA|qUqA|qT
28 eqid LSpanW=LSpanW
29 20 28 lspss WLModqA|qTBaseWqA|qUqA|qTLSpanWqA|qULSpanWqA|qT
30 13 25 27 29 syl3anc φqA|qUqA|qTLSpanWqA|qULSpanWqA|qT
31 1 28 2 lssats WLModUSU=LSpanWqA|qU
32 3 5 31 syl2anc φU=LSpanWqA|qU
33 32 adantr φqA|qUqA|qTU=LSpanWqA|qU
34 1 28 2 lssats WLModTST=LSpanWqA|qT
35 3 4 34 syl2anc φT=LSpanWqA|qT
36 35 adantr φqA|qUqA|qTT=LSpanWqA|qT
37 30 33 36 3sstr4d φqA|qUqA|qTUT
38 37 ex φqA|qUqA|qTUT
39 12 38 biimtrrid φqAqUqTUT
40 11 39 biimtrrid φqA¬qU¬qTUT
41 9 40 mtod φ¬qA¬qU¬qT
42 dfrex2 qAqU¬qT¬qA¬qU¬qT
43 41 42 sylibr φqAqU¬qT