Metamath Proof Explorer


Theorem lsatcvatlem

Description: Lemma for lsatcvat . (Contributed by NM, 10-Jan-2015)

Ref Expression
Hypotheses lsatcvat.o 0˙=0W
lsatcvat.s S=LSubSpW
lsatcvat.p ˙=LSSumW
lsatcvat.a A=LSAtomsW
lsatcvat.w φWLVec
lsatcvat.u φUS
lsatcvat.q φQA
lsatcvat.r φRA
lsatcvat.n φU0˙
lsatcvat.l φUQ˙R
lsatcvat.m φ¬QU
Assertion lsatcvatlem φUA

Proof

Step Hyp Ref Expression
1 lsatcvat.o 0˙=0W
2 lsatcvat.s S=LSubSpW
3 lsatcvat.p ˙=LSSumW
4 lsatcvat.a A=LSAtomsW
5 lsatcvat.w φWLVec
6 lsatcvat.u φUS
7 lsatcvat.q φQA
8 lsatcvat.r φRA
9 lsatcvat.n φU0˙
10 lsatcvat.l φUQ˙R
11 lsatcvat.m φ¬QU
12 lveclmod WLVecWLMod
13 5 12 syl φWLMod
14 2 1 4 13 6 9 lssatomic φxAxU
15 eqid LW=LW
16 5 3ad2ant1 φxAxUWLVec
17 13 3ad2ant1 φxAxUWLMod
18 simp2 φxAxUxA
19 2 4 17 18 lsatlssel φxAxUxS
20 2 4 13 7 lsatlssel φQS
21 20 3ad2ant1 φxAxUQS
22 2 3 lsmcl WLModQSxSQ˙xS
23 17 21 19 22 syl3anc φxAxUQ˙xS
24 6 3ad2ant1 φxAxUUS
25 11 3ad2ant1 φxAxU¬QU
26 sseq1 x=QxUQU
27 26 biimpcd xUx=QQU
28 27 necon3bd xU¬QUxQ
29 28 3ad2ant3 φxAxU¬QUxQ
30 25 29 mpd φxAxUxQ
31 7 3ad2ant1 φxAxUQA
32 1 4 16 18 31 lsatnem0 φxAxUxQxQ=0˙
33 30 32 mpbid φxAxUxQ=0˙
34 2 3 1 4 15 16 19 31 lcvp φxAxUxQ=0˙xLWx˙Q
35 33 34 mpbid φxAxUxLWx˙Q
36 lmodabl WLModWAbel
37 17 36 syl φxAxUWAbel
38 2 lsssssubg WLModSSubGrpW
39 17 38 syl φxAxUSSubGrpW
40 39 19 sseldd φxAxUxSubGrpW
41 39 21 sseldd φxAxUQSubGrpW
42 3 lsmcom WAbelxSubGrpWQSubGrpWx˙Q=Q˙x
43 37 40 41 42 syl3anc φxAxUx˙Q=Q˙x
44 35 43 breqtrd φxAxUxLWQ˙x
45 simp3 φxAxUxU
46 10 3ad2ant1 φxAxUUQ˙R
47 3 lsmub1 QSubGrpWxSubGrpWQQ˙x
48 41 40 47 syl2anc φxAxUQQ˙x
49 8 3ad2ant1 φxAxURA
50 10 pssssd φUQ˙R
51 50 3ad2ant1 φxAxUUQ˙R
52 45 51 sstrd φxAxUxQ˙R
53 3 4 16 18 49 31 52 30 lsatexch1 φxAxURQ˙x
54 2 4 13 8 lsatlssel φRS
55 54 3ad2ant1 φxAxURS
56 39 55 sseldd φxAxURSubGrpW
57 39 23 sseldd φxAxUQ˙xSubGrpW
58 3 lsmlub QSubGrpWRSubGrpWQ˙xSubGrpWQQ˙xRQ˙xQ˙RQ˙x
59 41 56 57 58 syl3anc φxAxUQQ˙xRQ˙xQ˙RQ˙x
60 48 53 59 mpbi2and φxAxUQ˙RQ˙x
61 46 60 psssstrd φxAxUUQ˙x
62 2 15 16 19 23 24 44 45 61 lcvnbtwn3 φxAxUU=x
63 62 18 eqeltrd φxAxUUA
64 63 rexlimdv3a φxAxUUA
65 14 64 mpd φUA