Description: A subspace of a normed module is a normed module. (Contributed by Mario Carneiro, 4-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lssnlm.x | |
|
lssnlm.s | |
||
Assertion | lssnlm | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lssnlm.x | |
|
2 | lssnlm.s | |
|
3 | nlmngp | |
|
4 | nlmlmod | |
|
5 | 2 | lsssubg | |
6 | 4 5 | sylan | |
7 | 1 | subgngp | |
8 | 3 6 7 | syl2an2r | |
9 | 1 2 | lsslmod | |
10 | 4 9 | sylan | |
11 | eqid | |
|
12 | 1 11 | resssca | |
13 | 12 | adantl | |
14 | 11 | nlmnrg | |
15 | 14 | adantr | |
16 | 13 15 | eqeltrrd | |
17 | 8 10 16 | 3jca | |
18 | simpll | |
|
19 | simprl | |
|
20 | 13 | adantr | |
21 | 20 | fveq2d | |
22 | 19 21 | eleqtrrd | |
23 | 6 | adantr | |
24 | eqid | |
|
25 | 24 | subgss | |
26 | 23 25 | syl | |
27 | simprr | |
|
28 | 1 | subgbas | |
29 | 23 28 | syl | |
30 | 27 29 | eleqtrrd | |
31 | 26 30 | sseldd | |
32 | eqid | |
|
33 | eqid | |
|
34 | eqid | |
|
35 | eqid | |
|
36 | 24 32 33 11 34 35 | nmvs | |
37 | 18 22 31 36 | syl3anc | |
38 | simplr | |
|
39 | 1 33 | ressvsca | |
40 | 38 39 | syl | |
41 | 40 | oveqd | |
42 | 41 | fveq2d | |
43 | 4 | ad2antrr | |
44 | 11 33 34 2 | lssvscl | |
45 | 43 38 22 30 44 | syl22anc | |
46 | eqid | |
|
47 | 1 32 46 | subgnm2 | |
48 | 6 45 47 | syl2an2r | |
49 | 42 48 | eqtr3d | |
50 | 20 | eqcomd | |
51 | 50 | fveq2d | |
52 | 51 | fveq1d | |
53 | 1 32 46 | subgnm2 | |
54 | 6 30 53 | syl2an2r | |
55 | 52 54 | oveq12d | |
56 | 37 49 55 | 3eqtr4d | |
57 | 56 | ralrimivva | |
58 | eqid | |
|
59 | eqid | |
|
60 | eqid | |
|
61 | eqid | |
|
62 | eqid | |
|
63 | 58 46 59 60 61 62 | isnlm | |
64 | 17 57 63 | sylanbrc | |