Metamath Proof Explorer


Theorem lssnlm

Description: A subspace of a normed module is a normed module. (Contributed by Mario Carneiro, 4-Oct-2015)

Ref Expression
Hypotheses lssnlm.x X = W 𝑠 U
lssnlm.s S = LSubSp W
Assertion lssnlm W NrmMod U S X NrmMod

Proof

Step Hyp Ref Expression
1 lssnlm.x X = W 𝑠 U
2 lssnlm.s S = LSubSp W
3 nlmngp W NrmMod W NrmGrp
4 nlmlmod W NrmMod W LMod
5 2 lsssubg W LMod U S U SubGrp W
6 4 5 sylan W NrmMod U S U SubGrp W
7 1 subgngp W NrmGrp U SubGrp W X NrmGrp
8 3 6 7 syl2an2r W NrmMod U S X NrmGrp
9 1 2 lsslmod W LMod U S X LMod
10 4 9 sylan W NrmMod U S X LMod
11 eqid Scalar W = Scalar W
12 1 11 resssca U S Scalar W = Scalar X
13 12 adantl W NrmMod U S Scalar W = Scalar X
14 11 nlmnrg W NrmMod Scalar W NrmRing
15 14 adantr W NrmMod U S Scalar W NrmRing
16 13 15 eqeltrrd W NrmMod U S Scalar X NrmRing
17 8 10 16 3jca W NrmMod U S X NrmGrp X LMod Scalar X NrmRing
18 simpll W NrmMod U S x Base Scalar X y Base X W NrmMod
19 simprl W NrmMod U S x Base Scalar X y Base X x Base Scalar X
20 13 adantr W NrmMod U S x Base Scalar X y Base X Scalar W = Scalar X
21 20 fveq2d W NrmMod U S x Base Scalar X y Base X Base Scalar W = Base Scalar X
22 19 21 eleqtrrd W NrmMod U S x Base Scalar X y Base X x Base Scalar W
23 6 adantr W NrmMod U S x Base Scalar X y Base X U SubGrp W
24 eqid Base W = Base W
25 24 subgss U SubGrp W U Base W
26 23 25 syl W NrmMod U S x Base Scalar X y Base X U Base W
27 simprr W NrmMod U S x Base Scalar X y Base X y Base X
28 1 subgbas U SubGrp W U = Base X
29 23 28 syl W NrmMod U S x Base Scalar X y Base X U = Base X
30 27 29 eleqtrrd W NrmMod U S x Base Scalar X y Base X y U
31 26 30 sseldd W NrmMod U S x Base Scalar X y Base X y Base W
32 eqid norm W = norm W
33 eqid W = W
34 eqid Base Scalar W = Base Scalar W
35 eqid norm Scalar W = norm Scalar W
36 24 32 33 11 34 35 nmvs W NrmMod x Base Scalar W y Base W norm W x W y = norm Scalar W x norm W y
37 18 22 31 36 syl3anc W NrmMod U S x Base Scalar X y Base X norm W x W y = norm Scalar W x norm W y
38 simplr W NrmMod U S x Base Scalar X y Base X U S
39 1 33 ressvsca U S W = X
40 38 39 syl W NrmMod U S x Base Scalar X y Base X W = X
41 40 oveqd W NrmMod U S x Base Scalar X y Base X x W y = x X y
42 41 fveq2d W NrmMod U S x Base Scalar X y Base X norm X x W y = norm X x X y
43 4 ad2antrr W NrmMod U S x Base Scalar X y Base X W LMod
44 11 33 34 2 lssvscl W LMod U S x Base Scalar W y U x W y U
45 43 38 22 30 44 syl22anc W NrmMod U S x Base Scalar X y Base X x W y U
46 eqid norm X = norm X
47 1 32 46 subgnm2 U SubGrp W x W y U norm X x W y = norm W x W y
48 6 45 47 syl2an2r W NrmMod U S x Base Scalar X y Base X norm X x W y = norm W x W y
49 42 48 eqtr3d W NrmMod U S x Base Scalar X y Base X norm X x X y = norm W x W y
50 20 eqcomd W NrmMod U S x Base Scalar X y Base X Scalar X = Scalar W
51 50 fveq2d W NrmMod U S x Base Scalar X y Base X norm Scalar X = norm Scalar W
52 51 fveq1d W NrmMod U S x Base Scalar X y Base X norm Scalar X x = norm Scalar W x
53 1 32 46 subgnm2 U SubGrp W y U norm X y = norm W y
54 6 30 53 syl2an2r W NrmMod U S x Base Scalar X y Base X norm X y = norm W y
55 52 54 oveq12d W NrmMod U S x Base Scalar X y Base X norm Scalar X x norm X y = norm Scalar W x norm W y
56 37 49 55 3eqtr4d W NrmMod U S x Base Scalar X y Base X norm X x X y = norm Scalar X x norm X y
57 56 ralrimivva W NrmMod U S x Base Scalar X y Base X norm X x X y = norm Scalar X x norm X y
58 eqid Base X = Base X
59 eqid X = X
60 eqid Scalar X = Scalar X
61 eqid Base Scalar X = Base Scalar X
62 eqid norm Scalar X = norm Scalar X
63 58 46 59 60 61 62 isnlm X NrmMod X NrmGrp X LMod Scalar X NrmRing x Base Scalar X y Base X norm X x X y = norm Scalar X x norm X y
64 17 57 63 sylanbrc W NrmMod U S X NrmMod