Metamath Proof Explorer


Theorem lssnlm

Description: A subspace of a normed module is a normed module. (Contributed by Mario Carneiro, 4-Oct-2015)

Ref Expression
Hypotheses lssnlm.x X=W𝑠U
lssnlm.s S=LSubSpW
Assertion lssnlm WNrmModUSXNrmMod

Proof

Step Hyp Ref Expression
1 lssnlm.x X=W𝑠U
2 lssnlm.s S=LSubSpW
3 nlmngp WNrmModWNrmGrp
4 nlmlmod WNrmModWLMod
5 2 lsssubg WLModUSUSubGrpW
6 4 5 sylan WNrmModUSUSubGrpW
7 1 subgngp WNrmGrpUSubGrpWXNrmGrp
8 3 6 7 syl2an2r WNrmModUSXNrmGrp
9 1 2 lsslmod WLModUSXLMod
10 4 9 sylan WNrmModUSXLMod
11 eqid ScalarW=ScalarW
12 1 11 resssca USScalarW=ScalarX
13 12 adantl WNrmModUSScalarW=ScalarX
14 11 nlmnrg WNrmModScalarWNrmRing
15 14 adantr WNrmModUSScalarWNrmRing
16 13 15 eqeltrrd WNrmModUSScalarXNrmRing
17 8 10 16 3jca WNrmModUSXNrmGrpXLModScalarXNrmRing
18 simpll WNrmModUSxBaseScalarXyBaseXWNrmMod
19 simprl WNrmModUSxBaseScalarXyBaseXxBaseScalarX
20 13 adantr WNrmModUSxBaseScalarXyBaseXScalarW=ScalarX
21 20 fveq2d WNrmModUSxBaseScalarXyBaseXBaseScalarW=BaseScalarX
22 19 21 eleqtrrd WNrmModUSxBaseScalarXyBaseXxBaseScalarW
23 6 adantr WNrmModUSxBaseScalarXyBaseXUSubGrpW
24 eqid BaseW=BaseW
25 24 subgss USubGrpWUBaseW
26 23 25 syl WNrmModUSxBaseScalarXyBaseXUBaseW
27 simprr WNrmModUSxBaseScalarXyBaseXyBaseX
28 1 subgbas USubGrpWU=BaseX
29 23 28 syl WNrmModUSxBaseScalarXyBaseXU=BaseX
30 27 29 eleqtrrd WNrmModUSxBaseScalarXyBaseXyU
31 26 30 sseldd WNrmModUSxBaseScalarXyBaseXyBaseW
32 eqid normW=normW
33 eqid W=W
34 eqid BaseScalarW=BaseScalarW
35 eqid normScalarW=normScalarW
36 24 32 33 11 34 35 nmvs WNrmModxBaseScalarWyBaseWnormWxWy=normScalarWxnormWy
37 18 22 31 36 syl3anc WNrmModUSxBaseScalarXyBaseXnormWxWy=normScalarWxnormWy
38 simplr WNrmModUSxBaseScalarXyBaseXUS
39 1 33 ressvsca USW=X
40 38 39 syl WNrmModUSxBaseScalarXyBaseXW=X
41 40 oveqd WNrmModUSxBaseScalarXyBaseXxWy=xXy
42 41 fveq2d WNrmModUSxBaseScalarXyBaseXnormXxWy=normXxXy
43 4 ad2antrr WNrmModUSxBaseScalarXyBaseXWLMod
44 11 33 34 2 lssvscl WLModUSxBaseScalarWyUxWyU
45 43 38 22 30 44 syl22anc WNrmModUSxBaseScalarXyBaseXxWyU
46 eqid normX=normX
47 1 32 46 subgnm2 USubGrpWxWyUnormXxWy=normWxWy
48 6 45 47 syl2an2r WNrmModUSxBaseScalarXyBaseXnormXxWy=normWxWy
49 42 48 eqtr3d WNrmModUSxBaseScalarXyBaseXnormXxXy=normWxWy
50 20 eqcomd WNrmModUSxBaseScalarXyBaseXScalarX=ScalarW
51 50 fveq2d WNrmModUSxBaseScalarXyBaseXnormScalarX=normScalarW
52 51 fveq1d WNrmModUSxBaseScalarXyBaseXnormScalarXx=normScalarWx
53 1 32 46 subgnm2 USubGrpWyUnormXy=normWy
54 6 30 53 syl2an2r WNrmModUSxBaseScalarXyBaseXnormXy=normWy
55 52 54 oveq12d WNrmModUSxBaseScalarXyBaseXnormScalarXxnormXy=normScalarWxnormWy
56 37 49 55 3eqtr4d WNrmModUSxBaseScalarXyBaseXnormXxXy=normScalarXxnormXy
57 56 ralrimivva WNrmModUSxBaseScalarXyBaseXnormXxXy=normScalarXxnormXy
58 eqid BaseX=BaseX
59 eqid X=X
60 eqid ScalarX=ScalarX
61 eqid BaseScalarX=BaseScalarX
62 eqid normScalarX=normScalarX
63 58 46 59 60 61 62 isnlm XNrmModXNrmGrpXLModScalarXNrmRingxBaseScalarXyBaseXnormXxXy=normScalarXxnormXy
64 17 57 63 sylanbrc WNrmModUSXNrmMod