Metamath Proof Explorer


Theorem mapdcv

Description: Covering property of the converse of the map defined by df-mapd . (Contributed by NM, 14-Mar-2015)

Ref Expression
Hypotheses mapdcv.h H=LHypK
mapdcv.m M=mapdKW
mapdcv.u U=DVecHKW
mapdcv.s S=LSubSpU
mapdcv.c C=LU
mapdcv.d D=LCDualKW
mapdcv.e E=LD
mapdcv.k φKHLWH
mapdcv.x φXS
mapdcv.y φYS
Assertion mapdcv φXCYMXEMY

Proof

Step Hyp Ref Expression
1 mapdcv.h H=LHypK
2 mapdcv.m M=mapdKW
3 mapdcv.u U=DVecHKW
4 mapdcv.s S=LSubSpU
5 mapdcv.c C=LU
6 mapdcv.d D=LCDualKW
7 mapdcv.e E=LD
8 mapdcv.k φKHLWH
9 mapdcv.x φXS
10 mapdcv.y φYS
11 1 2 3 4 8 9 10 mapdsord φMXMYXY
12 eqid LSubSpD=LSubSpD
13 8 adantr φvSKHLWH
14 simpr φvSvS
15 1 2 3 4 6 12 13 14 mapdcl2 φvSMvLSubSpD
16 8 adantr φfLSubSpDKHLWH
17 1 2 6 12 8 mapdrn2 φranM=LSubSpD
18 17 eleq2d φfranMfLSubSpD
19 18 biimpar φfLSubSpDfranM
20 1 2 3 4 16 19 mapdcnvcl φfLSubSpDM-1fS
21 1 2 16 19 mapdcnvid2 φfLSubSpDMM-1f=f
22 21 eqcomd φfLSubSpDf=MM-1f
23 fveq2 v=M-1fMv=MM-1f
24 23 rspceeqv M-1fSf=MM-1fvSf=Mv
25 20 22 24 syl2anc φfLSubSpDvSf=Mv
26 psseq2 f=MvMXfMXMv
27 psseq1 f=MvfMYMvMY
28 26 27 anbi12d f=MvMXffMYMXMvMvMY
29 28 adantl φf=MvMXffMYMXMvMvMY
30 15 25 29 rexxfrd φfLSubSpDMXffMYvSMXMvMvMY
31 9 adantr φvSXS
32 1 2 3 4 13 31 14 mapdsord φvSMXMvXv
33 10 adantr φvSYS
34 1 2 3 4 13 14 33 mapdsord φvSMvMYvY
35 32 34 anbi12d φvSMXMvMvMYXvvY
36 35 rexbidva φvSMXMvMvMYvSXvvY
37 30 36 bitrd φfLSubSpDMXffMYvSXvvY
38 37 notbid φ¬fLSubSpDMXffMY¬vSXvvY
39 11 38 anbi12d φMXMY¬fLSubSpDMXffMYXY¬vSXvvY
40 1 6 8 lcdlmod φDLMod
41 1 2 3 4 6 12 8 9 mapdcl2 φMXLSubSpD
42 1 2 3 4 6 12 8 10 mapdcl2 φMYLSubSpD
43 12 7 40 41 42 lcvbr φMXEMYMXMY¬fLSubSpDMXffMY
44 1 3 8 dvhlmod φULMod
45 4 5 44 9 10 lcvbr φXCYXY¬vSXvvY
46 39 43 45 3bitr4rd φXCYMXEMY