Metamath Proof Explorer


Theorem mat2pmatghm

Description: The transformation of matrices into polynomial matrices is an additive group homomorphism. (Contributed by AV, 28-Oct-2019) (Proof shortened by AV, 28-Nov-2019)

Ref Expression
Hypotheses mat2pmatbas.t T=NmatToPolyMatR
mat2pmatbas.a A=NMatR
mat2pmatbas.b B=BaseA
mat2pmatbas.p P=Poly1R
mat2pmatbas.c C=NMatP
mat2pmatbas0.h H=BaseC
Assertion mat2pmatghm NFinRRingTAGrpHomC

Proof

Step Hyp Ref Expression
1 mat2pmatbas.t T=NmatToPolyMatR
2 mat2pmatbas.a A=NMatR
3 mat2pmatbas.b B=BaseA
4 mat2pmatbas.p P=Poly1R
5 mat2pmatbas.c C=NMatP
6 mat2pmatbas0.h H=BaseC
7 eqid +A=+A
8 eqid +C=+C
9 2 matgrp NFinRRingAGrp
10 4 5 pmatring NFinRRingCRing
11 ringgrp CRingCGrp
12 10 11 syl NFinRRingCGrp
13 1 2 3 4 5 6 mat2pmatf NFinRRingT:BH
14 eqid BaseP=BaseP
15 simpl NFinRRingNFin
16 15 adantr NFinRRingxByBNFin
17 4 ply1ring RRingPRing
18 17 ad2antlr NFinRRingxByBPRing
19 simp1lr NFinRRingxByBiNjNRRing
20 eqid BaseR=BaseR
21 simp2 NFinRRingxByBiNjNiN
22 simp3 NFinRRingxByBiNjNjN
23 simp1rl NFinRRingxByBiNjNxB
24 2 20 3 21 22 23 matecld NFinRRingxByBiNjNixjBaseR
25 eqid algScP=algScP
26 4 25 20 14 ply1sclcl RRingixjBaseRalgScPixjBaseP
27 19 24 26 syl2anc NFinRRingxByBiNjNalgScPixjBaseP
28 5 14 6 16 18 27 matbas2d NFinRRingxByBiN,jNalgScPixjH
29 simp1rr NFinRRingxByBiNjNyB
30 2 20 3 21 22 29 matecld NFinRRingxByBiNjNiyjBaseR
31 4 25 20 14 ply1sclcl RRingiyjBaseRalgScPiyjBaseP
32 19 30 31 syl2anc NFinRRingxByBiNjNalgScPiyjBaseP
33 5 14 6 16 18 32 matbas2d NFinRRingxByBiN,jNalgScPiyjH
34 eqid +P=+P
35 5 6 8 34 matplusg2 iN,jNalgScPixjHiN,jNalgScPiyjHiN,jNalgScPixj+CiN,jNalgScPiyj=iN,jNalgScPixj+PfiN,jNalgScPiyj
36 28 33 35 syl2anc NFinRRingxByBiN,jNalgScPixj+CiN,jNalgScPiyj=iN,jNalgScPixj+PfiN,jNalgScPiyj
37 fvexd NFinRRingxByBiNjNalgScPixjV
38 fvexd NFinRRingxByBiNjNalgScPiyjV
39 eqidd NFinRRingxByBiN,jNalgScPixj=iN,jNalgScPixj
40 eqidd NFinRRingxByBiN,jNalgScPiyj=iN,jNalgScPiyj
41 16 16 37 38 39 40 offval22 NFinRRingxByBiN,jNalgScPixj+PfiN,jNalgScPiyj=iN,jNalgScPixj+PalgScPiyj
42 simpr NFinRRingxByBxByB
43 42 3ad2ant1 NFinRRingxByBiNjNxByB
44 3simpc NFinRRingxByBiNjNiNjN
45 eqid +R=+R
46 2 3 7 45 matplusgcell xByBiNjNix+Ayj=ixj+Riyj
47 43 44 46 syl2anc NFinRRingxByBiNjNix+Ayj=ixj+Riyj
48 4 ply1sca RRingR=ScalarP
49 48 adantl NFinRRingR=ScalarP
50 49 fveq2d NFinRRing+R=+ScalarP
51 50 oveqd NFinRRingixj+Riyj=ixj+ScalarPiyj
52 51 adantr NFinRRingxByBixj+Riyj=ixj+ScalarPiyj
53 52 3ad2ant1 NFinRRingxByBiNjNixj+Riyj=ixj+ScalarPiyj
54 47 53 eqtrd NFinRRingxByBiNjNix+Ayj=ixj+ScalarPiyj
55 54 fveq2d NFinRRingxByBiNjNalgScPix+Ayj=algScPixj+ScalarPiyj
56 eqid ScalarP=ScalarP
57 18 3ad2ant1 NFinRRingxByBiNjNPRing
58 4 ply1lmod RRingPLMod
59 58 ad2antlr NFinRRingxByBPLMod
60 59 3ad2ant1 NFinRRingxByBiNjNPLMod
61 25 56 57 60 asclghm NFinRRingxByBiNjNalgScPScalarPGrpHomP
62 49 eqcomd NFinRRingScalarP=R
63 62 fveq2d NFinRRingBaseScalarP=BaseR
64 63 eleq2d NFinRRingixjBaseScalarPixjBaseR
65 64 adantr NFinRRingxByBixjBaseScalarPixjBaseR
66 65 3ad2ant1 NFinRRingxByBiNjNixjBaseScalarPixjBaseR
67 24 66 mpbird NFinRRingxByBiNjNixjBaseScalarP
68 63 eleq2d NFinRRingiyjBaseScalarPiyjBaseR
69 68 adantr NFinRRingxByBiyjBaseScalarPiyjBaseR
70 69 3ad2ant1 NFinRRingxByBiNjNiyjBaseScalarPiyjBaseR
71 30 70 mpbird NFinRRingxByBiNjNiyjBaseScalarP
72 eqid BaseScalarP=BaseScalarP
73 eqid +ScalarP=+ScalarP
74 72 73 34 ghmlin algScPScalarPGrpHomPixjBaseScalarPiyjBaseScalarPalgScPixj+ScalarPiyj=algScPixj+PalgScPiyj
75 61 67 71 74 syl3anc NFinRRingxByBiNjNalgScPixj+ScalarPiyj=algScPixj+PalgScPiyj
76 55 75 eqtr2d NFinRRingxByBiNjNalgScPixj+PalgScPiyj=algScPix+Ayj
77 76 mpoeq3dva NFinRRingxByBiN,jNalgScPixj+PalgScPiyj=iN,jNalgScPix+Ayj
78 41 77 eqtrd NFinRRingxByBiN,jNalgScPixj+PfiN,jNalgScPiyj=iN,jNalgScPix+Ayj
79 36 78 eqtr2d NFinRRingxByBiN,jNalgScPix+Ayj=iN,jNalgScPixj+CiN,jNalgScPiyj
80 simpl NFinRRingxByBNFinRRing
81 2 matring NFinRRingARing
82 ringmnd ARingAMnd
83 81 82 syl NFinRRingAMnd
84 83 anim1i NFinRRingxByBAMndxByB
85 3anass AMndxByBAMndxByB
86 84 85 sylibr NFinRRingxByBAMndxByB
87 3 7 mndcl AMndxByBx+AyB
88 86 87 syl NFinRRingxByBx+AyB
89 df-3an NFinRRingx+AyBNFinRRingx+AyB
90 80 88 89 sylanbrc NFinRRingxByBNFinRRingx+AyB
91 1 2 3 4 25 mat2pmatval NFinRRingx+AyBTx+Ay=iN,jNalgScPix+Ayj
92 90 91 syl NFinRRingxByBTx+Ay=iN,jNalgScPix+Ayj
93 simpl xByBxB
94 93 anim2i NFinRRingxByBNFinRRingxB
95 df-3an NFinRRingxBNFinRRingxB
96 94 95 sylibr NFinRRingxByBNFinRRingxB
97 1 2 3 4 25 mat2pmatval NFinRRingxBTx=iN,jNalgScPixj
98 96 97 syl NFinRRingxByBTx=iN,jNalgScPixj
99 simpr xByByB
100 99 anim2i NFinRRingxByBNFinRRingyB
101 df-3an NFinRRingyBNFinRRingyB
102 100 101 sylibr NFinRRingxByBNFinRRingyB
103 1 2 3 4 25 mat2pmatval NFinRRingyBTy=iN,jNalgScPiyj
104 102 103 syl NFinRRingxByBTy=iN,jNalgScPiyj
105 98 104 oveq12d NFinRRingxByBTx+CTy=iN,jNalgScPixj+CiN,jNalgScPiyj
106 79 92 105 3eqtr4d NFinRRingxByBTx+Ay=Tx+CTy
107 3 6 7 8 9 12 13 106 isghmd NFinRRingTAGrpHomC