| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mat2pmatbas.t |
|
| 2 |
|
mat2pmatbas.a |
|
| 3 |
|
mat2pmatbas.b |
|
| 4 |
|
mat2pmatbas.p |
|
| 5 |
|
mat2pmatbas.c |
|
| 6 |
|
mat2pmatbas0.h |
|
| 7 |
|
eqid |
|
| 8 |
|
eqid |
|
| 9 |
2
|
matgrp |
|
| 10 |
4 5
|
pmatring |
|
| 11 |
|
ringgrp |
|
| 12 |
10 11
|
syl |
|
| 13 |
1 2 3 4 5 6
|
mat2pmatf |
|
| 14 |
|
eqid |
|
| 15 |
|
simpl |
|
| 16 |
15
|
adantr |
|
| 17 |
4
|
ply1ring |
|
| 18 |
17
|
ad2antlr |
|
| 19 |
|
simp1lr |
|
| 20 |
|
eqid |
|
| 21 |
|
simp2 |
|
| 22 |
|
simp3 |
|
| 23 |
|
simp1rl |
|
| 24 |
2 20 3 21 22 23
|
matecld |
|
| 25 |
|
eqid |
|
| 26 |
4 25 20 14
|
ply1sclcl |
|
| 27 |
19 24 26
|
syl2anc |
|
| 28 |
5 14 6 16 18 27
|
matbas2d |
|
| 29 |
|
simp1rr |
|
| 30 |
2 20 3 21 22 29
|
matecld |
|
| 31 |
4 25 20 14
|
ply1sclcl |
|
| 32 |
19 30 31
|
syl2anc |
|
| 33 |
5 14 6 16 18 32
|
matbas2d |
|
| 34 |
|
eqid |
|
| 35 |
5 6 8 34
|
matplusg2 |
|
| 36 |
28 33 35
|
syl2anc |
|
| 37 |
|
fvexd |
|
| 38 |
|
fvexd |
|
| 39 |
|
eqidd |
|
| 40 |
|
eqidd |
|
| 41 |
16 16 37 38 39 40
|
offval22 |
|
| 42 |
|
simpr |
|
| 43 |
42
|
3ad2ant1 |
|
| 44 |
|
3simpc |
|
| 45 |
|
eqid |
|
| 46 |
2 3 7 45
|
matplusgcell |
|
| 47 |
43 44 46
|
syl2anc |
|
| 48 |
4
|
ply1sca |
|
| 49 |
48
|
adantl |
|
| 50 |
49
|
fveq2d |
|
| 51 |
50
|
oveqd |
|
| 52 |
51
|
adantr |
|
| 53 |
52
|
3ad2ant1 |
|
| 54 |
47 53
|
eqtrd |
|
| 55 |
54
|
fveq2d |
|
| 56 |
|
eqid |
|
| 57 |
18
|
3ad2ant1 |
|
| 58 |
4
|
ply1lmod |
|
| 59 |
58
|
ad2antlr |
|
| 60 |
59
|
3ad2ant1 |
|
| 61 |
25 56 57 60
|
asclghm |
|
| 62 |
49
|
eqcomd |
|
| 63 |
62
|
fveq2d |
|
| 64 |
63
|
eleq2d |
|
| 65 |
64
|
adantr |
|
| 66 |
65
|
3ad2ant1 |
|
| 67 |
24 66
|
mpbird |
|
| 68 |
63
|
eleq2d |
|
| 69 |
68
|
adantr |
|
| 70 |
69
|
3ad2ant1 |
|
| 71 |
30 70
|
mpbird |
|
| 72 |
|
eqid |
|
| 73 |
|
eqid |
|
| 74 |
72 73 34
|
ghmlin |
|
| 75 |
61 67 71 74
|
syl3anc |
|
| 76 |
55 75
|
eqtr2d |
|
| 77 |
76
|
mpoeq3dva |
|
| 78 |
41 77
|
eqtrd |
|
| 79 |
36 78
|
eqtr2d |
|
| 80 |
|
simpl |
|
| 81 |
2
|
matring |
|
| 82 |
|
ringmnd |
|
| 83 |
81 82
|
syl |
|
| 84 |
83
|
anim1i |
|
| 85 |
|
3anass |
|
| 86 |
84 85
|
sylibr |
|
| 87 |
3 7
|
mndcl |
|
| 88 |
86 87
|
syl |
|
| 89 |
|
df-3an |
|
| 90 |
80 88 89
|
sylanbrc |
|
| 91 |
1 2 3 4 25
|
mat2pmatval |
|
| 92 |
90 91
|
syl |
|
| 93 |
|
simpl |
|
| 94 |
93
|
anim2i |
|
| 95 |
|
df-3an |
|
| 96 |
94 95
|
sylibr |
|
| 97 |
1 2 3 4 25
|
mat2pmatval |
|
| 98 |
96 97
|
syl |
|
| 99 |
|
simpr |
|
| 100 |
99
|
anim2i |
|
| 101 |
|
df-3an |
|
| 102 |
100 101
|
sylibr |
|
| 103 |
1 2 3 4 25
|
mat2pmatval |
|
| 104 |
102 103
|
syl |
|
| 105 |
98 104
|
oveq12d |
|
| 106 |
79 92 105
|
3eqtr4d |
|
| 107 |
3 6 7 8 9 12 13 106
|
isghmd |
|