Metamath Proof Explorer


Theorem mbfmco2

Description: The pair building of two measurable functions is measurable. ( cf. cnmpt1t ). (Contributed by Thierry Arnoux, 6-Jun-2017)

Ref Expression
Hypotheses mbfmco.1 φRransigAlgebra
mbfmco.2 φSransigAlgebra
mbfmco.3 φTransigAlgebra
mbfmco2.4 φFRMblFnμS
mbfmco2.5 φGRMblFnμT
mbfmco2.6 H=xRFxGx
Assertion mbfmco2 φHRMblFnμS×sT

Proof

Step Hyp Ref Expression
1 mbfmco.1 φRransigAlgebra
2 mbfmco.2 φSransigAlgebra
3 mbfmco.3 φTransigAlgebra
4 mbfmco2.4 φFRMblFnμS
5 mbfmco2.5 φGRMblFnμT
6 mbfmco2.6 H=xRFxGx
7 1 2 4 mbfmf φF:RS
8 7 ffvelcdmda φxRFxS
9 1 3 5 mbfmf φG:RT
10 9 ffvelcdmda φxRGxT
11 opelxpi FxSGxTFxGxS×T
12 8 10 11 syl2anc φxRFxGxS×T
13 sxuni SransigAlgebraTransigAlgebraS×T=S×sT
14 2 3 13 syl2anc φS×T=S×sT
15 14 adantr φxRS×T=S×sT
16 12 15 eleqtrd φxRFxGxS×sT
17 16 6 fmptd φH:RS×sT
18 eqid aS,bTa×b=aS,bTa×b
19 vex aV
20 vex bV
21 19 20 xpex a×bV
22 18 21 elrnmpo cranaS,bTa×baSbTc=a×b
23 simp3 φaSbTc=a×bc=a×b
24 23 imaeq2d φaSbTc=a×bH-1c=H-1a×b
25 simp1 φaSbTc=a×bφ
26 simp2l φaSbTc=a×baS
27 simp2r φaSbTc=a×bbT
28 7 9 6 xppreima2 φH-1a×b=F-1aG-1b
29 28 3ad2ant1 φaSbTH-1a×b=F-1aG-1b
30 1 3ad2ant1 φaSbTRransigAlgebra
31 2 3ad2ant1 φaSbTSransigAlgebra
32 4 3ad2ant1 φaSbTFRMblFnμS
33 simp2 φaSbTaS
34 30 31 32 33 mbfmcnvima φaSbTF-1aR
35 3 3ad2ant1 φaSbTTransigAlgebra
36 5 3ad2ant1 φaSbTGRMblFnμT
37 simp3 φaSbTbT
38 30 35 36 37 mbfmcnvima φaSbTG-1bR
39 inelsiga RransigAlgebraF-1aRG-1bRF-1aG-1bR
40 30 34 38 39 syl3anc φaSbTF-1aG-1bR
41 29 40 eqeltrd φaSbTH-1a×bR
42 25 26 27 41 syl3anc φaSbTc=a×bH-1a×bR
43 24 42 eqeltrd φaSbTc=a×bH-1cR
44 43 3expia φaSbTc=a×bH-1cR
45 44 rexlimdvva φaSbTc=a×bH-1cR
46 45 imp φaSbTc=a×bH-1cR
47 22 46 sylan2b φcranaS,bTa×bH-1cR
48 47 ralrimiva φcranaS,bTa×bH-1cR
49 eqid ranaS,bTa×b=ranaS,bTa×b
50 49 txbasex SransigAlgebraTransigAlgebraranaS,bTa×bV
51 2 3 50 syl2anc φranaS,bTa×bV
52 49 sxval SransigAlgebraTransigAlgebraS×sT=𝛔ranaS,bTa×b
53 2 3 52 syl2anc φS×sT=𝛔ranaS,bTa×b
54 51 1 53 imambfm φHRMblFnμS×sTH:RS×sTcranaS,bTa×bH-1cR
55 17 48 54 mpbir2and φHRMblFnμS×sT