Step |
Hyp |
Ref |
Expression |
1 |
|
mbfmco.1 |
|
2 |
|
mbfmco.2 |
|
3 |
|
mbfmco.3 |
|
4 |
|
mbfmco2.4 |
|
5 |
|
mbfmco2.5 |
|
6 |
|
mbfmco2.6 |
|
7 |
1 2 4
|
mbfmf |
|
8 |
7
|
ffvelrnda |
|
9 |
1 3 5
|
mbfmf |
|
10 |
9
|
ffvelrnda |
|
11 |
|
opelxpi |
|
12 |
8 10 11
|
syl2anc |
|
13 |
|
sxuni |
|
14 |
2 3 13
|
syl2anc |
|
15 |
14
|
adantr |
|
16 |
12 15
|
eleqtrd |
|
17 |
16 6
|
fmptd |
|
18 |
|
eqid |
|
19 |
|
vex |
|
20 |
|
vex |
|
21 |
19 20
|
xpex |
|
22 |
18 21
|
elrnmpo |
|
23 |
|
simp3 |
|
24 |
23
|
imaeq2d |
|
25 |
|
simp1 |
|
26 |
|
simp2l |
|
27 |
|
simp2r |
|
28 |
7 9 6
|
xppreima2 |
|
29 |
28
|
3ad2ant1 |
|
30 |
1
|
3ad2ant1 |
|
31 |
2
|
3ad2ant1 |
|
32 |
4
|
3ad2ant1 |
|
33 |
|
simp2 |
|
34 |
30 31 32 33
|
mbfmcnvima |
|
35 |
3
|
3ad2ant1 |
|
36 |
5
|
3ad2ant1 |
|
37 |
|
simp3 |
|
38 |
30 35 36 37
|
mbfmcnvima |
|
39 |
|
inelsiga |
|
40 |
30 34 38 39
|
syl3anc |
|
41 |
29 40
|
eqeltrd |
|
42 |
25 26 27 41
|
syl3anc |
|
43 |
24 42
|
eqeltrd |
|
44 |
43
|
3expia |
|
45 |
44
|
rexlimdvva |
|
46 |
45
|
imp |
|
47 |
22 46
|
sylan2b |
|
48 |
47
|
ralrimiva |
|
49 |
|
eqid |
|
50 |
49
|
txbasex |
|
51 |
2 3 50
|
syl2anc |
|
52 |
49
|
sxval |
|
53 |
2 3 52
|
syl2anc |
|
54 |
51 1 53
|
imambfm |
|
55 |
17 48 54
|
mpbir2and |
|