Metamath Proof Explorer


Theorem metakunt24

Description: Technical condition such that metakunt17 holds. (Contributed by metakunt, 28-May-2024)

Ref Expression
Hypotheses metakunt24.1 φM
metakunt24.2 φI
metakunt24.3 φIM
Assertion metakunt24 φ1I1IM1M=1M=1I1IM1M1M=M-I+1M11MIM

Proof

Step Hyp Ref Expression
1 metakunt24.1 φM
2 metakunt24.2 φI
3 metakunt24.3 φIM
4 indir 1I1IM1M=1I1MIM1M
5 4 a1i φ1I1IM1M=1I1MIM1M
6 1 2 3 metakunt18 φ1I1IM1=1I1M=IM1M=M-I+1M11MI=M-I+1M1M=1MIM=
7 6 simpld φ1I1IM1=1I1M=IM1M=
8 7 simp2d φ1I1M=
9 7 simp3d φIM1M=
10 8 9 uneq12d φ1I1MIM1M=
11 unidm =
12 11 a1i φ=
13 10 12 eqtrd φ1I1MIM1M=
14 5 13 eqtrd φ1I1IM1M=
15 1zzd φ1
16 1 nnzd φM
17 1 nnge1d φ1M
18 1 nnred φM
19 18 leidd φMM
20 15 16 16 17 19 elfzd φM1M
21 20 fzsplitnd φ1M=1M1MM
22 oveq1 I=MI1=M1
23 22 oveq2d I=M1I1=1M1
24 oveq1 I=MIM1=MM1
25 23 24 uneq12d I=M1I1IM1=1M1MM1
26 25 uneq1d I=M1I1IM1MM=1M1MM1MM
27 26 adantl φI=M1I1IM1MM=1M1MM1MM
28 18 ltm1d φM1<M
29 16 15 zsubcld φM1
30 fzn MM1M1<MMM1=
31 16 29 30 syl2anc φM1<MMM1=
32 28 31 mpbid φMM1=
33 32 adantr φI=MMM1=
34 33 uneq2d φI=M1M1MM1=1M1
35 un0 1M1=1M1
36 35 a1i φI=M1M1=1M1
37 34 36 eqtrd φI=M1M1MM1=1M1
38 37 uneq1d φI=M1M1MM1MM=1M1MM
39 27 38 eqtrd φI=M1I1IM1MM=1M1MM
40 39 eqcomd φI=M1M1MM=1I1IM1MM
41 15 adantr φ¬I=M1
42 16 adantr φ¬I=MM
43 42 41 zsubcld φ¬I=MM1
44 2 nnzd φI
45 44 adantr φ¬I=MI
46 2 nnge1d φ1I
47 46 adantr φ¬I=M1I
48 eqid M=M
49 eqeq1 M=IM=MI=M
50 48 49 mpbii M=II=M
51 50 necon3bi ¬I=MMI
52 51 adantl φ¬I=MMI
53 2 nnred φI
54 53 18 3 leltned φI<MMI
55 54 adantr φ¬I=MI<MMI
56 52 55 mpbird φ¬I=MI<M
57 zltlem1 IMI<MIM1
58 44 16 57 syl2anc φI<MIM1
59 58 adantr φ¬I=MI<MIM1
60 56 59 mpbid φ¬I=MIM1
61 41 43 45 47 60 fzsplitnr φ¬I=M1M1=1I1IM1
62 61 uneq1d φ¬I=M1M1MM=1I1IM1MM
63 40 62 pm2.61dan φ1M1MM=1I1IM1MM
64 fzsn MMM=M
65 16 64 syl φMM=M
66 65 uneq2d φ1I1IM1MM=1I1IM1M
67 21 63 66 3eqtrd φ1M=1I1IM1M
68 uncom M-I+1M11MI=1MIM-I+1M1
69 68 a1i φM-I+1M11MI=1MIM-I+1M1
70 69 uneq1d φM-I+1M11MIM=1MIM-I+1M1M
71 65 uneq2d φ1MIM-I+1M1MM=1MIM-I+1M1M
72 71 eqcomd φ1MIM-I+1M1M=1MIM-I+1M1MM
73 fz10 10=
74 73 uneq1i 101M1=1M1
75 74 a1i φ101M1=1M1
76 75 adantr φI=M101M1=1M1
77 uncom 1M1=1M1
78 77 eqeq1i 1M1=1M11M1=1M1
79 78 imbi2i φI=M1M1=1M1φI=M1M1=1M1
80 36 79 mpbi φI=M1M1=1M1
81 76 80 eqtrd φI=M101M1=1M1
82 81 eqcomd φI=M1M1=101M1
83 oveq2 I=MMI=MM
84 83 adantl φI=MMI=MM
85 18 recnd φM
86 85 subidd φMM=0
87 86 adantr φI=MMM=0
88 84 87 eqtrd φI=MMI=0
89 88 oveq2d φI=M1MI=10
90 83 oveq1d I=MM-I+1=M-M+1
91 90 adantl φI=MM-I+1=M-M+1
92 87 oveq1d φI=MM-M+1=0+1
93 91 92 eqtrd φI=MM-I+1=0+1
94 1e0p1 1=0+1
95 93 94 eqtr4di φI=MM-I+1=1
96 95 oveq1d φI=MM-I+1M1=1M1
97 89 96 uneq12d φI=M1MIM-I+1M1=101M1
98 97 eqcomd φI=M101M1=1MIM-I+1M1
99 82 98 eqtrd φI=M1M1=1MIM-I+1M1
100 42 45 zsubcld φ¬I=MMI
101 53 adantr φ¬I=MI
102 18 adantr φ¬I=MM
103 1red φ¬I=M1
104 101 102 103 60 lesubd φ¬I=M1MI
105 103 101 102 47 lesub2dd φ¬I=MMIM1
106 41 43 100 104 105 elfzd φ¬I=MMI1M1
107 fzsplit MI1M11M1=1MIM-I+1M1
108 106 107 syl φ¬I=M1M1=1MIM-I+1M1
109 99 108 pm2.61dan φ1M1=1MIM-I+1M1
110 109 uneq1d φ1M1MM=1MIM-I+1M1MM
111 21 110 eqtrd φ1M=1MIM-I+1M1MM
112 111 eqcomd φ1MIM-I+1M1MM=1M
113 72 112 eqtrd φ1MIM-I+1M1M=1M
114 70 113 eqtrd φM-I+1M11MIM=1M
115 114 eqcomd φ1M=M-I+1M11MIM
116 14 67 115 3jca φ1I1IM1M=1M=1I1IM1M1M=M-I+1M11MIM