Metamath Proof Explorer


Theorem metakunt24

Description: Technical condition such that metakunt17 holds. (Contributed by metakunt, 28-May-2024)

Ref Expression
Hypotheses metakunt24.1 φ M
metakunt24.2 φ I
metakunt24.3 φ I M
Assertion metakunt24 φ 1 I 1 I M 1 M = 1 M = 1 I 1 I M 1 M 1 M = M - I + 1 M 1 1 M I M

Proof

Step Hyp Ref Expression
1 metakunt24.1 φ M
2 metakunt24.2 φ I
3 metakunt24.3 φ I M
4 indir 1 I 1 I M 1 M = 1 I 1 M I M 1 M
5 4 a1i φ 1 I 1 I M 1 M = 1 I 1 M I M 1 M
6 1 2 3 metakunt18 φ 1 I 1 I M 1 = 1 I 1 M = I M 1 M = M - I + 1 M 1 1 M I = M - I + 1 M 1 M = 1 M I M =
7 6 simpld φ 1 I 1 I M 1 = 1 I 1 M = I M 1 M =
8 7 simp2d φ 1 I 1 M =
9 7 simp3d φ I M 1 M =
10 8 9 uneq12d φ 1 I 1 M I M 1 M =
11 unidm =
12 11 a1i φ =
13 10 12 eqtrd φ 1 I 1 M I M 1 M =
14 5 13 eqtrd φ 1 I 1 I M 1 M =
15 1zzd φ 1
16 1 nnzd φ M
17 1 nnge1d φ 1 M
18 1 nnred φ M
19 18 leidd φ M M
20 15 16 16 17 19 elfzd φ M 1 M
21 20 fzsplitnd φ 1 M = 1 M 1 M M
22 oveq1 I = M I 1 = M 1
23 22 oveq2d I = M 1 I 1 = 1 M 1
24 oveq1 I = M I M 1 = M M 1
25 23 24 uneq12d I = M 1 I 1 I M 1 = 1 M 1 M M 1
26 25 uneq1d I = M 1 I 1 I M 1 M M = 1 M 1 M M 1 M M
27 26 adantl φ I = M 1 I 1 I M 1 M M = 1 M 1 M M 1 M M
28 18 ltm1d φ M 1 < M
29 16 15 zsubcld φ M 1
30 fzn M M 1 M 1 < M M M 1 =
31 16 29 30 syl2anc φ M 1 < M M M 1 =
32 28 31 mpbid φ M M 1 =
33 32 adantr φ I = M M M 1 =
34 33 uneq2d φ I = M 1 M 1 M M 1 = 1 M 1
35 un0 1 M 1 = 1 M 1
36 35 a1i φ I = M 1 M 1 = 1 M 1
37 34 36 eqtrd φ I = M 1 M 1 M M 1 = 1 M 1
38 37 uneq1d φ I = M 1 M 1 M M 1 M M = 1 M 1 M M
39 27 38 eqtrd φ I = M 1 I 1 I M 1 M M = 1 M 1 M M
40 39 eqcomd φ I = M 1 M 1 M M = 1 I 1 I M 1 M M
41 15 adantr φ ¬ I = M 1
42 16 adantr φ ¬ I = M M
43 42 41 zsubcld φ ¬ I = M M 1
44 2 nnzd φ I
45 44 adantr φ ¬ I = M I
46 2 nnge1d φ 1 I
47 46 adantr φ ¬ I = M 1 I
48 eqid M = M
49 eqeq1 M = I M = M I = M
50 48 49 mpbii M = I I = M
51 50 necon3bi ¬ I = M M I
52 51 adantl φ ¬ I = M M I
53 2 nnred φ I
54 53 18 3 leltned φ I < M M I
55 54 adantr φ ¬ I = M I < M M I
56 52 55 mpbird φ ¬ I = M I < M
57 zltlem1 I M I < M I M 1
58 44 16 57 syl2anc φ I < M I M 1
59 58 adantr φ ¬ I = M I < M I M 1
60 56 59 mpbid φ ¬ I = M I M 1
61 41 43 45 47 60 fzsplitnr φ ¬ I = M 1 M 1 = 1 I 1 I M 1
62 61 uneq1d φ ¬ I = M 1 M 1 M M = 1 I 1 I M 1 M M
63 40 62 pm2.61dan φ 1 M 1 M M = 1 I 1 I M 1 M M
64 fzsn M M M = M
65 16 64 syl φ M M = M
66 65 uneq2d φ 1 I 1 I M 1 M M = 1 I 1 I M 1 M
67 21 63 66 3eqtrd φ 1 M = 1 I 1 I M 1 M
68 uncom M - I + 1 M 1 1 M I = 1 M I M - I + 1 M 1
69 68 a1i φ M - I + 1 M 1 1 M I = 1 M I M - I + 1 M 1
70 69 uneq1d φ M - I + 1 M 1 1 M I M = 1 M I M - I + 1 M 1 M
71 65 uneq2d φ 1 M I M - I + 1 M 1 M M = 1 M I M - I + 1 M 1 M
72 71 eqcomd φ 1 M I M - I + 1 M 1 M = 1 M I M - I + 1 M 1 M M
73 fz10 1 0 =
74 73 uneq1i 1 0 1 M 1 = 1 M 1
75 74 a1i φ 1 0 1 M 1 = 1 M 1
76 75 adantr φ I = M 1 0 1 M 1 = 1 M 1
77 uncom 1 M 1 = 1 M 1
78 77 eqeq1i 1 M 1 = 1 M 1 1 M 1 = 1 M 1
79 78 imbi2i φ I = M 1 M 1 = 1 M 1 φ I = M 1 M 1 = 1 M 1
80 36 79 mpbi φ I = M 1 M 1 = 1 M 1
81 76 80 eqtrd φ I = M 1 0 1 M 1 = 1 M 1
82 81 eqcomd φ I = M 1 M 1 = 1 0 1 M 1
83 oveq2 I = M M I = M M
84 83 adantl φ I = M M I = M M
85 18 recnd φ M
86 85 subidd φ M M = 0
87 86 adantr φ I = M M M = 0
88 84 87 eqtrd φ I = M M I = 0
89 88 oveq2d φ I = M 1 M I = 1 0
90 83 oveq1d I = M M - I + 1 = M - M + 1
91 90 adantl φ I = M M - I + 1 = M - M + 1
92 87 oveq1d φ I = M M - M + 1 = 0 + 1
93 91 92 eqtrd φ I = M M - I + 1 = 0 + 1
94 1e0p1 1 = 0 + 1
95 93 94 eqtr4di φ I = M M - I + 1 = 1
96 95 oveq1d φ I = M M - I + 1 M 1 = 1 M 1
97 89 96 uneq12d φ I = M 1 M I M - I + 1 M 1 = 1 0 1 M 1
98 97 eqcomd φ I = M 1 0 1 M 1 = 1 M I M - I + 1 M 1
99 82 98 eqtrd φ I = M 1 M 1 = 1 M I M - I + 1 M 1
100 42 45 zsubcld φ ¬ I = M M I
101 53 adantr φ ¬ I = M I
102 18 adantr φ ¬ I = M M
103 1red φ ¬ I = M 1
104 101 102 103 60 lesubd φ ¬ I = M 1 M I
105 103 101 102 47 lesub2dd φ ¬ I = M M I M 1
106 41 43 100 104 105 elfzd φ ¬ I = M M I 1 M 1
107 fzsplit M I 1 M 1 1 M 1 = 1 M I M - I + 1 M 1
108 106 107 syl φ ¬ I = M 1 M 1 = 1 M I M - I + 1 M 1
109 99 108 pm2.61dan φ 1 M 1 = 1 M I M - I + 1 M 1
110 109 uneq1d φ 1 M 1 M M = 1 M I M - I + 1 M 1 M M
111 21 110 eqtrd φ 1 M = 1 M I M - I + 1 M 1 M M
112 111 eqcomd φ 1 M I M - I + 1 M 1 M M = 1 M
113 72 112 eqtrd φ 1 M I M - I + 1 M 1 M = 1 M
114 70 113 eqtrd φ M - I + 1 M 1 1 M I M = 1 M
115 114 eqcomd φ 1 M = M - I + 1 M 1 1 M I M
116 14 67 115 3jca φ 1 I 1 I M 1 M = 1 M = 1 I 1 I M 1 M 1 M = M - I + 1 M 1 1 M I M