Metamath Proof Explorer


Theorem metakunt30

Description: Construction of one solution of the increment equation system. (Contributed by metakunt, 7-Jul-2024)

Ref Expression
Hypotheses metakunt30.1 φM
metakunt30.2 φI
metakunt30.3 φIM
metakunt30.4 φX1M
metakunt30.5 A=x1Mifx=IMifx<Ixx1
metakunt30.6 B=z1Mifz=MMifz<Iz+M-Iz+1-I
metakunt30.7 φ¬X=I
metakunt30.8 φ¬X<I
metakunt30.9 C=y1Mify=MIify<Iyy+1
metakunt30.10 H=ifIXI10
Assertion metakunt30 φCBAX=X-I+H

Proof

Step Hyp Ref Expression
1 metakunt30.1 φM
2 metakunt30.2 φI
3 metakunt30.3 φIM
4 metakunt30.4 φX1M
5 metakunt30.5 A=x1Mifx=IMifx<Ixx1
6 metakunt30.6 B=z1Mifz=MMifz<Iz+M-Iz+1-I
7 metakunt30.7 φ¬X=I
8 metakunt30.8 φ¬X<I
9 metakunt30.9 C=y1Mify=MIify<Iyy+1
10 metakunt30.10 H=ifIXI10
11 1 2 3 4 5 6 7 8 metakunt28 φBAX=XI
12 11 fveq2d φCBAX=CXI
13 9 a1i φC=y1Mify=MIify<Iyy+1
14 elfznn X1MX
15 4 14 syl φX
16 nnre XX
17 15 16 syl φX
18 2 nnred φI
19 17 18 resubcld φXI
20 1 nnred φM
21 20 18 resubcld φMI
22 elfzle2 X1MXM
23 4 22 syl φXM
24 17 20 18 23 lesub1dd φXIMI
25 2 nnrpd φI+
26 20 25 ltsubrpd φMI<M
27 19 21 20 24 26 lelttrd φXI<M
28 19 27 ltned φXIM
29 28 adantr φy=XIXIM
30 neeq1 y=XIyMXIM
31 30 adantl φy=XIyMXIM
32 29 31 mpbird φy=XIyM
33 32 neneqd φy=XI¬y=M
34 33 iffalsed φy=XIify=MIify<Iyy+1=ify<Iyy+1
35 18 19 lenltd φIXI¬XI<I
36 35 biimpa φIXI¬XI<I
37 36 3adant2 φy=XIIXI¬XI<I
38 breq1 y=XIy<IXI<I
39 38 3ad2ant2 φy=XIIXIy<IXI<I
40 37 39 mtbird φy=XIIXI¬y<I
41 40 iffalsed φy=XIIXIify<Iyy+1=y+1
42 simp2 φy=XIIXIy=XI
43 42 oveq1d φy=XIIXIy+1=X-I+1
44 simp3 φy=XIIXIIXI
45 44 iftrued φy=XIIXIifIXI10=1
46 45 eqcomd φy=XIIXI1=ifIXI10
47 10 a1i φy=XIIXIH=ifIXI10
48 47 eqcomd φy=XIIXIifIXI10=H
49 46 48 eqtrd φy=XIIXI1=H
50 49 oveq2d φy=XIIXIX-I+1=X-I+H
51 43 50 eqtrd φy=XIIXIy+1=X-I+H
52 41 51 eqtrd φy=XIIXIify<Iyy+1=X-I+H
53 52 3expa φy=XIIXIify<Iyy+1=X-I+H
54 simpr φ¬IXI¬IXI
55 19 adantr φ¬IXIXI
56 18 adantr φ¬IXII
57 55 56 ltnled φ¬IXIXI<I¬IXI
58 54 57 mpbird φ¬IXIXI<I
59 58 3adant2 φy=XI¬IXIXI<I
60 38 3ad2ant2 φy=XI¬IXIy<IXI<I
61 59 60 mpbird φy=XI¬IXIy<I
62 61 iftrued φy=XI¬IXIify<Iyy+1=y
63 simp2 φy=XI¬IXIy=XI
64 nncn XX
65 15 64 syl φX
66 65 3ad2ant1 φy=XI¬IXIX
67 2 nncnd φI
68 67 3ad2ant1 φy=XI¬IXII
69 66 68 subcld φy=XI¬IXIXI
70 69 addridd φy=XI¬IXIX-I+0=XI
71 70 eqcomd φy=XI¬IXIXI=X-I+0
72 10 a1i φy=XI¬IXIH=ifIXI10
73 simp3 φy=XI¬IXI¬IXI
74 73 iffalsed φy=XI¬IXIifIXI10=0
75 72 74 eqtrd φy=XI¬IXIH=0
76 75 eqcomd φy=XI¬IXI0=H
77 76 oveq2d φy=XI¬IXIX-I+0=X-I+H
78 71 77 eqtrd φy=XI¬IXIXI=X-I+H
79 63 78 eqtrd φy=XI¬IXIy=X-I+H
80 62 79 eqtrd φy=XI¬IXIify<Iyy+1=X-I+H
81 80 3expa φy=XI¬IXIify<Iyy+1=X-I+H
82 53 81 pm2.61dan φy=XIify<Iyy+1=X-I+H
83 34 82 eqtrd φy=XIify=MIify<Iyy+1=X-I+H
84 1zzd φ1
85 1 nnzd φM
86 15 nnzd φX
87 2 nnzd φI
88 86 87 zsubcld φXI
89 1m1e0 11=0
90 18 17 8 nltled φIX
91 7 neqned φXI
92 90 91 jca φIXXI
93 18 17 ltlend φI<XIXXI
94 92 93 mpbird φI<X
95 18 17 posdifd φI<X0<XI
96 94 95 mpbid φ0<XI
97 89 96 eqbrtrid φ11<XI
98 zlem1lt 1XI1XI11<XI
99 84 88 98 syl2anc φ1XI11<XI
100 97 99 mpbird φ1XI
101 19 20 27 ltled φXIM
102 84 85 88 100 101 elfzd φXI1M
103 0zd φ0
104 84 103 ifcld φifIXI10
105 10 a1i φH=ifIXI10
106 105 eleq1d φHifIXI10
107 104 106 mpbird φH
108 88 107 zaddcld φX-I+H
109 13 83 102 108 fvmptd φCXI=X-I+H
110 12 109 eqtrd φCBAX=X-I+H