Description: The filter base generated by a metric D . (Contributed by Thierry Arnoux, 26-Nov-2017) (Revised by Thierry Arnoux, 11-Feb-2018) (Proof shortened by Peter Mazsa, 2-Oct-2022)
Ref | Expression | ||
---|---|---|---|
Hypothesis | metust.1 | |
|
Assertion | metustfbas | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | metust.1 | |
|
2 | 1 | metustel | |
3 | simpr | |
|
4 | cnvimass | |
|
5 | psmetf | |
|
6 | 5 | fdmd | |
7 | 6 | adantr | |
8 | 4 7 | sseqtrid | |
9 | 3 8 | eqsstrd | |
10 | 9 | ex | |
11 | 10 | rexlimdvw | |
12 | 2 11 | sylbid | |
13 | 12 | ralrimiv | |
14 | pwssb | |
|
15 | 13 14 | sylibr | |
16 | 15 | adantl | |
17 | cnvexg | |
|
18 | imaexg | |
|
19 | elisset | |
|
20 | 1rp | |
|
21 | oveq2 | |
|
22 | 21 | imaeq2d | |
23 | 22 | rspceeqv | |
24 | 20 23 | mpan | |
25 | 24 | eximi | |
26 | 17 18 19 25 | 4syl | |
27 | 2 | exbidv | |
28 | 26 27 | mpbird | |
29 | 28 | adantl | |
30 | n0 | |
|
31 | 29 30 | sylibr | |
32 | 1 | metustid | |
33 | 32 | adantll | |
34 | n0 | |
|
35 | 34 | biimpi | |
36 | 35 | adantr | |
37 | opelidres | |
|
38 | 37 | ibir | |
39 | 38 | ne0d | |
40 | 39 | exlimiv | |
41 | 36 40 | syl | |
42 | 41 | adantr | |
43 | ssn0 | |
|
44 | 33 42 43 | syl2anc | |
45 | 44 | nelrdva | |
46 | df-nel | |
|
47 | 45 46 | sylibr | |
48 | df-ss | |
|
49 | 48 | biimpi | |
50 | 49 | adantl | |
51 | simplrl | |
|
52 | 50 51 | eqeltrd | |
53 | sseqin2 | |
|
54 | 53 | biimpi | |
55 | 54 | adantl | |
56 | simplrr | |
|
57 | 55 56 | eqeltrd | |
58 | simplr | |
|
59 | simprl | |
|
60 | simprr | |
|
61 | 1 | metustto | |
62 | 58 59 60 61 | syl3anc | |
63 | 52 57 62 | mpjaodan | |
64 | ssidd | |
|
65 | sseq1 | |
|
66 | 65 | rspcev | |
67 | 63 64 66 | syl2anc | |
68 | 67 | ralrimivva | |
69 | 31 47 68 | 3jca | |
70 | elfvex | |
|
71 | 70 | adantl | |
72 | 71 71 | xpexd | |
73 | isfbas2 | |
|
74 | 72 73 | syl | |
75 | 16 69 74 | mpbir2and | |