Metamath Proof Explorer


Theorem metustfbas

Description: The filter base generated by a metric D . (Contributed by Thierry Arnoux, 26-Nov-2017) (Revised by Thierry Arnoux, 11-Feb-2018) (Proof shortened by Peter Mazsa, 2-Oct-2022)

Ref Expression
Hypothesis metust.1 F=rana+D-10a
Assertion metustfbas XDPsMetXFfBasX×X

Proof

Step Hyp Ref Expression
1 metust.1 F=rana+D-10a
2 1 metustel DPsMetXxFa+x=D-10a
3 simpr DPsMetXx=D-10ax=D-10a
4 cnvimass D-10adomD
5 psmetf DPsMetXD:X×X*
6 5 fdmd DPsMetXdomD=X×X
7 6 adantr DPsMetXx=D-10adomD=X×X
8 4 7 sseqtrid DPsMetXx=D-10aD-10aX×X
9 3 8 eqsstrd DPsMetXx=D-10axX×X
10 9 ex DPsMetXx=D-10axX×X
11 10 rexlimdvw DPsMetXa+x=D-10axX×X
12 2 11 sylbid DPsMetXxFxX×X
13 12 ralrimiv DPsMetXxFxX×X
14 pwssb F𝒫X×XxFxX×X
15 13 14 sylibr DPsMetXF𝒫X×X
16 15 adantl XDPsMetXF𝒫X×X
17 cnvexg DPsMetXD-1V
18 imaexg D-1VD-101V
19 elisset D-101Vxx=D-101
20 1rp 1+
21 oveq2 a=10a=01
22 21 imaeq2d a=1D-10a=D-101
23 22 rspceeqv 1+x=D-101a+x=D-10a
24 20 23 mpan x=D-101a+x=D-10a
25 24 eximi xx=D-101xa+x=D-10a
26 17 18 19 25 4syl DPsMetXxa+x=D-10a
27 2 exbidv DPsMetXxxFxa+x=D-10a
28 26 27 mpbird DPsMetXxxF
29 28 adantl XDPsMetXxxF
30 n0 FxxF
31 29 30 sylibr XDPsMetXF
32 1 metustid DPsMetXxFIXx
33 32 adantll XDPsMetXxFIXx
34 n0 XppX
35 34 biimpi XppX
36 35 adantr XDPsMetXppX
37 opelidres pXppIXpX
38 37 ibir pXppIX
39 38 ne0d pXIX
40 39 exlimiv ppXIX
41 36 40 syl XDPsMetXIX
42 41 adantr XDPsMetXxFIX
43 ssn0 IXxIXx
44 33 42 43 syl2anc XDPsMetXxFx
45 44 nelrdva XDPsMetX¬F
46 df-nel F¬F
47 45 46 sylibr XDPsMetXF
48 df-ss xyxy=x
49 48 biimpi xyxy=x
50 49 adantl XDPsMetXxFyFxyxy=x
51 simplrl XDPsMetXxFyFxyxF
52 50 51 eqeltrd XDPsMetXxFyFxyxyF
53 sseqin2 yxxy=y
54 53 biimpi yxxy=y
55 54 adantl XDPsMetXxFyFyxxy=y
56 simplrr XDPsMetXxFyFyxyF
57 55 56 eqeltrd XDPsMetXxFyFyxxyF
58 simplr XDPsMetXxFyFDPsMetX
59 simprl XDPsMetXxFyFxF
60 simprr XDPsMetXxFyFyF
61 1 metustto DPsMetXxFyFxyyx
62 58 59 60 61 syl3anc XDPsMetXxFyFxyyx
63 52 57 62 mpjaodan XDPsMetXxFyFxyF
64 ssidd XDPsMetXxFyFxyxy
65 sseq1 z=xyzxyxyxy
66 65 rspcev xyFxyxyzFzxy
67 63 64 66 syl2anc XDPsMetXxFyFzFzxy
68 67 ralrimivva XDPsMetXxFyFzFzxy
69 31 47 68 3jca XDPsMetXFFxFyFzFzxy
70 elfvex DPsMetXXV
71 70 adantl XDPsMetXXV
72 71 71 xpexd XDPsMetXX×XV
73 isfbas2 X×XVFfBasX×XF𝒫X×XFFxFyFzFzxy
74 72 73 syl XDPsMetXFfBasX×XF𝒫X×XFFxFyFzFzxy
75 16 69 74 mpbir2and XDPsMetXFfBasX×X