Description: Lemma for minveco . F is convergent in the subspace topology on Y . (Contributed by Mario Carneiro, 7-May-2014) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | minveco.x | |
|
minveco.m | |
||
minveco.n | |
||
minveco.y | |
||
minveco.u | |
||
minveco.w | |
||
minveco.a | |
||
minveco.d | |
||
minveco.j | |
||
minveco.r | |
||
minveco.s | |
||
minveco.f | |
||
minveco.1 | |
||
Assertion | minvecolem4a | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | minveco.x | |
|
2 | minveco.m | |
|
3 | minveco.n | |
|
4 | minveco.y | |
|
5 | minveco.u | |
|
6 | minveco.w | |
|
7 | minveco.a | |
|
8 | minveco.d | |
|
9 | minveco.j | |
|
10 | minveco.r | |
|
11 | minveco.s | |
|
12 | minveco.f | |
|
13 | minveco.1 | |
|
14 | phnv | |
|
15 | 5 14 | syl | |
16 | elin | |
|
17 | 6 16 | sylib | |
18 | 17 | simpld | |
19 | eqid | |
|
20 | eqid | |
|
21 | 4 8 19 20 | sspims | |
22 | 15 18 21 | syl2anc | |
23 | 17 | simprd | |
24 | eqid | |
|
25 | 24 19 | cbncms | |
26 | 23 25 | syl | |
27 | 22 26 | eqeltrrd | |
28 | 1 2 3 4 5 6 7 8 9 10 11 12 13 | minvecolem3 | |
29 | 1 8 | imsmet | |
30 | 5 14 29 | 3syl | |
31 | metxmet | |
|
32 | 30 31 | syl | |
33 | causs | |
|
34 | 32 12 33 | syl2anc | |
35 | 28 34 | mpbid | |
36 | eqid | |
|
37 | 36 | cmetcau | |
38 | 27 35 37 | syl2anc | |
39 | xmetres | |
|
40 | 36 | methaus | |
41 | 32 39 40 | 3syl | |
42 | lmfun | |
|
43 | funfvbrb | |
|
44 | 41 42 43 | 3syl | |
45 | 38 44 | mpbid | |