Metamath Proof Explorer


Theorem minvecolem4a

Description: Lemma for minveco . F is convergent in the subspace topology on Y . (Contributed by Mario Carneiro, 7-May-2014) (New usage is discouraged.)

Ref Expression
Hypotheses minveco.x X=BaseSetU
minveco.m M=-vU
minveco.n N=normCVU
minveco.y Y=BaseSetW
minveco.u φUCPreHilOLD
minveco.w φWSubSpUCBan
minveco.a φAX
minveco.d D=IndMetU
minveco.j J=MetOpenD
minveco.r R=ranyYNAMy
minveco.s S=supR<
minveco.f φF:Y
minveco.1 φnADFn2S2+1n
Assertion minvecolem4a φFtMetOpenDY×YtMetOpenDY×YF

Proof

Step Hyp Ref Expression
1 minveco.x X=BaseSetU
2 minveco.m M=-vU
3 minveco.n N=normCVU
4 minveco.y Y=BaseSetW
5 minveco.u φUCPreHilOLD
6 minveco.w φWSubSpUCBan
7 minveco.a φAX
8 minveco.d D=IndMetU
9 minveco.j J=MetOpenD
10 minveco.r R=ranyYNAMy
11 minveco.s S=supR<
12 minveco.f φF:Y
13 minveco.1 φnADFn2S2+1n
14 phnv UCPreHilOLDUNrmCVec
15 5 14 syl φUNrmCVec
16 elin WSubSpUCBanWSubSpUWCBan
17 6 16 sylib φWSubSpUWCBan
18 17 simpld φWSubSpU
19 eqid IndMetW=IndMetW
20 eqid SubSpU=SubSpU
21 4 8 19 20 sspims UNrmCVecWSubSpUIndMetW=DY×Y
22 15 18 21 syl2anc φIndMetW=DY×Y
23 17 simprd φWCBan
24 eqid BaseSetW=BaseSetW
25 24 19 cbncms WCBanIndMetWCMetBaseSetW
26 23 25 syl φIndMetWCMetBaseSetW
27 22 26 eqeltrrd φDY×YCMetBaseSetW
28 1 2 3 4 5 6 7 8 9 10 11 12 13 minvecolem3 φFCauD
29 1 8 imsmet UNrmCVecDMetX
30 5 14 29 3syl φDMetX
31 metxmet DMetXD∞MetX
32 30 31 syl φD∞MetX
33 causs D∞MetXF:YFCauDFCauDY×Y
34 32 12 33 syl2anc φFCauDFCauDY×Y
35 28 34 mpbid φFCauDY×Y
36 eqid MetOpenDY×Y=MetOpenDY×Y
37 36 cmetcau DY×YCMetBaseSetWFCauDY×YFdomtMetOpenDY×Y
38 27 35 37 syl2anc φFdomtMetOpenDY×Y
39 xmetres D∞MetXDY×Y∞MetXY
40 36 methaus DY×Y∞MetXYMetOpenDY×YHaus
41 32 39 40 3syl φMetOpenDY×YHaus
42 lmfun MetOpenDY×YHausFuntMetOpenDY×Y
43 funfvbrb FuntMetOpenDY×YFdomtMetOpenDY×YFtMetOpenDY×YtMetOpenDY×YF
44 41 42 43 3syl φFdomtMetOpenDY×YFtMetOpenDY×YtMetOpenDY×YF
45 38 44 mpbid φFtMetOpenDY×YtMetOpenDY×YF