Database
BASIC REAL AND COMPLEX FUNCTIONS
Basic number theory
The Prime Number Theorem
mulog2sumlem3
Next ⟩
mulog2sum
Metamath Proof Explorer
Ascii
Unicode
Theorem
mulog2sumlem3
Description:
Lemma for
mulog2sum
.
(Contributed by
Mario Carneiro
, 13-May-2016)
Ref
Expression
Hypotheses
logdivsum.1
⊢
F
=
y
∈
ℝ
+
⟼
∑
i
=
1
y
log
i
i
−
log
y
2
2
mulog2sumlem.1
⊢
φ
→
F
⇝
ℝ
L
Assertion
mulog2sumlem3
⊢
φ
→
x
∈
ℝ
+
⟼
∑
n
=
1
x
μ
n
n
log
x
n
2
−
2
log
x
∈
𝑂
1
Proof
Step
Hyp
Ref
Expression
1
logdivsum.1
⊢
F
=
y
∈
ℝ
+
⟼
∑
i
=
1
y
log
i
i
−
log
y
2
2
2
mulog2sumlem.1
⊢
φ
→
F
⇝
ℝ
L
3
2cn
⊢
2
∈
ℂ
4
3
a1i
⊢
φ
∧
x
∈
ℝ
+
→
2
∈
ℂ
5
fzfid
⊢
φ
∧
x
∈
ℝ
+
→
1
…
x
∈
Fin
6
elfznn
⊢
n
∈
1
…
x
→
n
∈
ℕ
7
6
adantl
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
n
∈
ℕ
8
mucl
⊢
n
∈
ℕ
→
μ
n
∈
ℤ
9
7
8
syl
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
μ
n
∈
ℤ
10
9
zred
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
μ
n
∈
ℝ
11
10
7
nndivred
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
μ
n
n
∈
ℝ
12
11
recnd
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
μ
n
n
∈
ℂ
13
simpr
⊢
φ
∧
x
∈
ℝ
+
→
x
∈
ℝ
+
14
6
nnrpd
⊢
n
∈
1
…
x
→
n
∈
ℝ
+
15
rpdivcl
⊢
x
∈
ℝ
+
∧
n
∈
ℝ
+
→
x
n
∈
ℝ
+
16
13
14
15
syl2an
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
x
n
∈
ℝ
+
17
16
relogcld
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
log
x
n
∈
ℝ
18
17
recnd
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
log
x
n
∈
ℂ
19
18
sqcld
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
log
x
n
2
∈
ℂ
20
19
halfcld
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
log
x
n
2
2
∈
ℂ
21
12
20
mulcld
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
μ
n
n
log
x
n
2
2
∈
ℂ
22
5
21
fsumcl
⊢
φ
∧
x
∈
ℝ
+
→
∑
n
=
1
x
μ
n
n
log
x
n
2
2
∈
ℂ
23
relogcl
⊢
x
∈
ℝ
+
→
log
x
∈
ℝ
24
23
adantl
⊢
φ
∧
x
∈
ℝ
+
→
log
x
∈
ℝ
25
24
recnd
⊢
φ
∧
x
∈
ℝ
+
→
log
x
∈
ℂ
26
4
22
25
subdid
⊢
φ
∧
x
∈
ℝ
+
→
2
∑
n
=
1
x
μ
n
n
log
x
n
2
2
−
log
x
=
2
∑
n
=
1
x
μ
n
n
log
x
n
2
2
−
2
log
x
27
5
4
21
fsummulc2
⊢
φ
∧
x
∈
ℝ
+
→
2
∑
n
=
1
x
μ
n
n
log
x
n
2
2
=
∑
n
=
1
x
2
μ
n
n
log
x
n
2
2
28
3
a1i
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
2
∈
ℂ
29
28
12
20
mul12d
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
2
μ
n
n
log
x
n
2
2
=
μ
n
n
2
log
x
n
2
2
30
2ne0
⊢
2
≠
0
31
30
a1i
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
2
≠
0
32
19
28
31
divcan2d
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
2
log
x
n
2
2
=
log
x
n
2
33
32
oveq2d
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
μ
n
n
2
log
x
n
2
2
=
μ
n
n
log
x
n
2
34
29
33
eqtrd
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
2
μ
n
n
log
x
n
2
2
=
μ
n
n
log
x
n
2
35
34
sumeq2dv
⊢
φ
∧
x
∈
ℝ
+
→
∑
n
=
1
x
2
μ
n
n
log
x
n
2
2
=
∑
n
=
1
x
μ
n
n
log
x
n
2
36
27
35
eqtrd
⊢
φ
∧
x
∈
ℝ
+
→
2
∑
n
=
1
x
μ
n
n
log
x
n
2
2
=
∑
n
=
1
x
μ
n
n
log
x
n
2
37
36
oveq1d
⊢
φ
∧
x
∈
ℝ
+
→
2
∑
n
=
1
x
μ
n
n
log
x
n
2
2
−
2
log
x
=
∑
n
=
1
x
μ
n
n
log
x
n
2
−
2
log
x
38
26
37
eqtrd
⊢
φ
∧
x
∈
ℝ
+
→
2
∑
n
=
1
x
μ
n
n
log
x
n
2
2
−
log
x
=
∑
n
=
1
x
μ
n
n
log
x
n
2
−
2
log
x
39
38
mpteq2dva
⊢
φ
→
x
∈
ℝ
+
⟼
2
∑
n
=
1
x
μ
n
n
log
x
n
2
2
−
log
x
=
x
∈
ℝ
+
⟼
∑
n
=
1
x
μ
n
n
log
x
n
2
−
2
log
x
40
22
25
subcld
⊢
φ
∧
x
∈
ℝ
+
→
∑
n
=
1
x
μ
n
n
log
x
n
2
2
−
log
x
∈
ℂ
41
rpssre
⊢
ℝ
+
⊆
ℝ
42
o1const
⊢
ℝ
+
⊆
ℝ
∧
2
∈
ℂ
→
x
∈
ℝ
+
⟼
2
∈
𝑂
1
43
41
3
42
mp2an
⊢
x
∈
ℝ
+
⟼
2
∈
𝑂
1
44
43
a1i
⊢
φ
→
x
∈
ℝ
+
⟼
2
∈
𝑂
1
45
emre
⊢
γ
∈
ℝ
46
45
recni
⊢
γ
∈
ℂ
47
mulcl
⊢
γ
∈
ℂ
∧
log
x
n
∈
ℂ
→
γ
log
x
n
∈
ℂ
48
46
18
47
sylancr
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
γ
log
x
n
∈
ℂ
49
rlimcl
⊢
F
⇝
ℝ
L
→
L
∈
ℂ
50
2
49
syl
⊢
φ
→
L
∈
ℂ
51
50
ad2antrr
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
L
∈
ℂ
52
48
51
subcld
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
γ
log
x
n
−
L
∈
ℂ
53
20
52
addcld
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
log
x
n
2
2
+
γ
log
x
n
-
L
∈
ℂ
54
12
53
mulcld
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
μ
n
n
log
x
n
2
2
+
γ
log
x
n
-
L
∈
ℂ
55
5
54
fsumcl
⊢
φ
∧
x
∈
ℝ
+
→
∑
n
=
1
x
μ
n
n
log
x
n
2
2
+
γ
log
x
n
-
L
∈
ℂ
56
12
52
mulcld
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
μ
n
n
γ
log
x
n
−
L
∈
ℂ
57
5
56
fsumcl
⊢
φ
∧
x
∈
ℝ
+
→
∑
n
=
1
x
μ
n
n
γ
log
x
n
−
L
∈
ℂ
58
55
25
57
sub32d
⊢
φ
∧
x
∈
ℝ
+
→
∑
n
=
1
x
μ
n
n
log
x
n
2
2
+
γ
log
x
n
-
L
-
log
x
-
∑
n
=
1
x
μ
n
n
γ
log
x
n
−
L
=
∑
n
=
1
x
μ
n
n
log
x
n
2
2
+
γ
log
x
n
-
L
-
∑
n
=
1
x
μ
n
n
γ
log
x
n
−
L
-
log
x
59
5
54
56
fsumsub
⊢
φ
∧
x
∈
ℝ
+
→
∑
n
=
1
x
μ
n
n
log
x
n
2
2
+
γ
log
x
n
-
L
−
μ
n
n
γ
log
x
n
−
L
=
∑
n
=
1
x
μ
n
n
log
x
n
2
2
+
γ
log
x
n
-
L
−
∑
n
=
1
x
μ
n
n
γ
log
x
n
−
L
60
12
53
52
subdid
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
μ
n
n
log
x
n
2
2
+
γ
log
x
n
−
L
-
γ
log
x
n
−
L
=
μ
n
n
log
x
n
2
2
+
γ
log
x
n
-
L
−
μ
n
n
γ
log
x
n
−
L
61
20
52
pncand
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
log
x
n
2
2
+
γ
log
x
n
−
L
-
γ
log
x
n
−
L
=
log
x
n
2
2
62
61
oveq2d
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
μ
n
n
log
x
n
2
2
+
γ
log
x
n
−
L
-
γ
log
x
n
−
L
=
μ
n
n
log
x
n
2
2
63
60
62
eqtr3d
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
μ
n
n
log
x
n
2
2
+
γ
log
x
n
-
L
−
μ
n
n
γ
log
x
n
−
L
=
μ
n
n
log
x
n
2
2
64
63
sumeq2dv
⊢
φ
∧
x
∈
ℝ
+
→
∑
n
=
1
x
μ
n
n
log
x
n
2
2
+
γ
log
x
n
-
L
−
μ
n
n
γ
log
x
n
−
L
=
∑
n
=
1
x
μ
n
n
log
x
n
2
2
65
59
64
eqtr3d
⊢
φ
∧
x
∈
ℝ
+
→
∑
n
=
1
x
μ
n
n
log
x
n
2
2
+
γ
log
x
n
-
L
−
∑
n
=
1
x
μ
n
n
γ
log
x
n
−
L
=
∑
n
=
1
x
μ
n
n
log
x
n
2
2
66
65
oveq1d
⊢
φ
∧
x
∈
ℝ
+
→
∑
n
=
1
x
μ
n
n
log
x
n
2
2
+
γ
log
x
n
-
L
-
∑
n
=
1
x
μ
n
n
γ
log
x
n
−
L
-
log
x
=
∑
n
=
1
x
μ
n
n
log
x
n
2
2
−
log
x
67
58
66
eqtrd
⊢
φ
∧
x
∈
ℝ
+
→
∑
n
=
1
x
μ
n
n
log
x
n
2
2
+
γ
log
x
n
-
L
-
log
x
-
∑
n
=
1
x
μ
n
n
γ
log
x
n
−
L
=
∑
n
=
1
x
μ
n
n
log
x
n
2
2
−
log
x
68
67
mpteq2dva
⊢
φ
→
x
∈
ℝ
+
⟼
∑
n
=
1
x
μ
n
n
log
x
n
2
2
+
γ
log
x
n
-
L
-
log
x
-
∑
n
=
1
x
μ
n
n
γ
log
x
n
−
L
=
x
∈
ℝ
+
⟼
∑
n
=
1
x
μ
n
n
log
x
n
2
2
−
log
x
69
55
25
subcld
⊢
φ
∧
x
∈
ℝ
+
→
∑
n
=
1
x
μ
n
n
log
x
n
2
2
+
γ
log
x
n
-
L
−
log
x
∈
ℂ
70
eqid
⊢
log
x
n
2
2
+
γ
log
x
n
-
L
=
log
x
n
2
2
+
γ
log
x
n
-
L
71
eqid
⊢
1
2
+
γ
+
L
+
∑
m
=
1
2
log
e
m
m
=
1
2
+
γ
+
L
+
∑
m
=
1
2
log
e
m
m
72
1
2
70
71
mulog2sumlem2
⊢
φ
→
x
∈
ℝ
+
⟼
∑
n
=
1
x
μ
n
n
log
x
n
2
2
+
γ
log
x
n
-
L
−
log
x
∈
𝑂
1
73
46
a1i
⊢
φ
∧
x
∈
ℝ
+
→
γ
∈
ℂ
74
12
18
mulcld
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
μ
n
n
log
x
n
∈
ℂ
75
5
73
74
fsummulc2
⊢
φ
∧
x
∈
ℝ
+
→
γ
∑
n
=
1
x
μ
n
n
log
x
n
=
∑
n
=
1
x
γ
μ
n
n
log
x
n
76
50
adantr
⊢
φ
∧
x
∈
ℝ
+
→
L
∈
ℂ
77
5
76
12
fsummulc1
⊢
φ
∧
x
∈
ℝ
+
→
∑
n
=
1
x
μ
n
n
L
=
∑
n
=
1
x
μ
n
n
L
78
75
77
oveq12d
⊢
φ
∧
x
∈
ℝ
+
→
γ
∑
n
=
1
x
μ
n
n
log
x
n
−
∑
n
=
1
x
μ
n
n
L
=
∑
n
=
1
x
γ
μ
n
n
log
x
n
−
∑
n
=
1
x
μ
n
n
L
79
mulcl
⊢
γ
∈
ℂ
∧
μ
n
n
log
x
n
∈
ℂ
→
γ
μ
n
n
log
x
n
∈
ℂ
80
46
74
79
sylancr
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
γ
μ
n
n
log
x
n
∈
ℂ
81
12
51
mulcld
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
μ
n
n
L
∈
ℂ
82
5
80
81
fsumsub
⊢
φ
∧
x
∈
ℝ
+
→
∑
n
=
1
x
γ
μ
n
n
log
x
n
−
μ
n
n
L
=
∑
n
=
1
x
γ
μ
n
n
log
x
n
−
∑
n
=
1
x
μ
n
n
L
83
46
a1i
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
γ
∈
ℂ
84
83
12
18
mul12d
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
γ
μ
n
n
log
x
n
=
μ
n
n
γ
log
x
n
85
84
oveq1d
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
γ
μ
n
n
log
x
n
−
μ
n
n
L
=
μ
n
n
γ
log
x
n
−
μ
n
n
L
86
12
48
51
subdid
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
μ
n
n
γ
log
x
n
−
L
=
μ
n
n
γ
log
x
n
−
μ
n
n
L
87
85
86
eqtr4d
⊢
φ
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
γ
μ
n
n
log
x
n
−
μ
n
n
L
=
μ
n
n
γ
log
x
n
−
L
88
87
sumeq2dv
⊢
φ
∧
x
∈
ℝ
+
→
∑
n
=
1
x
γ
μ
n
n
log
x
n
−
μ
n
n
L
=
∑
n
=
1
x
μ
n
n
γ
log
x
n
−
L
89
78
82
88
3eqtr2d
⊢
φ
∧
x
∈
ℝ
+
→
γ
∑
n
=
1
x
μ
n
n
log
x
n
−
∑
n
=
1
x
μ
n
n
L
=
∑
n
=
1
x
μ
n
n
γ
log
x
n
−
L
90
89
mpteq2dva
⊢
φ
→
x
∈
ℝ
+
⟼
γ
∑
n
=
1
x
μ
n
n
log
x
n
−
∑
n
=
1
x
μ
n
n
L
=
x
∈
ℝ
+
⟼
∑
n
=
1
x
μ
n
n
γ
log
x
n
−
L
91
5
74
fsumcl
⊢
φ
∧
x
∈
ℝ
+
→
∑
n
=
1
x
μ
n
n
log
x
n
∈
ℂ
92
mulcl
⊢
γ
∈
ℂ
∧
∑
n
=
1
x
μ
n
n
log
x
n
∈
ℂ
→
γ
∑
n
=
1
x
μ
n
n
log
x
n
∈
ℂ
93
46
91
92
sylancr
⊢
φ
∧
x
∈
ℝ
+
→
γ
∑
n
=
1
x
μ
n
n
log
x
n
∈
ℂ
94
5
12
fsumcl
⊢
φ
∧
x
∈
ℝ
+
→
∑
n
=
1
x
μ
n
n
∈
ℂ
95
94
76
mulcld
⊢
φ
∧
x
∈
ℝ
+
→
∑
n
=
1
x
μ
n
n
L
∈
ℂ
96
46
a1i
⊢
φ
→
γ
∈
ℂ
97
o1const
⊢
ℝ
+
⊆
ℝ
∧
γ
∈
ℂ
→
x
∈
ℝ
+
⟼
γ
∈
𝑂
1
98
41
96
97
sylancr
⊢
φ
→
x
∈
ℝ
+
⟼
γ
∈
𝑂
1
99
mulogsum
⊢
x
∈
ℝ
+
⟼
∑
n
=
1
x
μ
n
n
log
x
n
∈
𝑂
1
100
99
a1i
⊢
φ
→
x
∈
ℝ
+
⟼
∑
n
=
1
x
μ
n
n
log
x
n
∈
𝑂
1
101
73
91
98
100
o1mul2
⊢
φ
→
x
∈
ℝ
+
⟼
γ
∑
n
=
1
x
μ
n
n
log
x
n
∈
𝑂
1
102
mudivsum
⊢
x
∈
ℝ
+
⟼
∑
n
=
1
x
μ
n
n
∈
𝑂
1
103
102
a1i
⊢
φ
→
x
∈
ℝ
+
⟼
∑
n
=
1
x
μ
n
n
∈
𝑂
1
104
o1const
⊢
ℝ
+
⊆
ℝ
∧
L
∈
ℂ
→
x
∈
ℝ
+
⟼
L
∈
𝑂
1
105
41
50
104
sylancr
⊢
φ
→
x
∈
ℝ
+
⟼
L
∈
𝑂
1
106
94
76
103
105
o1mul2
⊢
φ
→
x
∈
ℝ
+
⟼
∑
n
=
1
x
μ
n
n
L
∈
𝑂
1
107
93
95
101
106
o1sub2
⊢
φ
→
x
∈
ℝ
+
⟼
γ
∑
n
=
1
x
μ
n
n
log
x
n
−
∑
n
=
1
x
μ
n
n
L
∈
𝑂
1
108
90
107
eqeltrrd
⊢
φ
→
x
∈
ℝ
+
⟼
∑
n
=
1
x
μ
n
n
γ
log
x
n
−
L
∈
𝑂
1
109
69
57
72
108
o1sub2
⊢
φ
→
x
∈
ℝ
+
⟼
∑
n
=
1
x
μ
n
n
log
x
n
2
2
+
γ
log
x
n
-
L
-
log
x
-
∑
n
=
1
x
μ
n
n
γ
log
x
n
−
L
∈
𝑂
1
110
68
109
eqeltrrd
⊢
φ
→
x
∈
ℝ
+
⟼
∑
n
=
1
x
μ
n
n
log
x
n
2
2
−
log
x
∈
𝑂
1
111
4
40
44
110
o1mul2
⊢
φ
→
x
∈
ℝ
+
⟼
2
∑
n
=
1
x
μ
n
n
log
x
n
2
2
−
log
x
∈
𝑂
1
112
39
111
eqeltrrd
⊢
φ
→
x
∈
ℝ
+
⟼
∑
n
=
1
x
μ
n
n
log
x
n
2
−
2
log
x
∈
𝑂
1