Metamath Proof Explorer


Theorem mulog2sumlem3

Description: Lemma for mulog2sum . (Contributed by Mario Carneiro, 13-May-2016)

Ref Expression
Hypotheses logdivsum.1 F=y+i=1ylogiilogy22
mulog2sumlem.1 φFL
Assertion mulog2sumlem3 φx+n=1xμnnlogxn22logx𝑂1

Proof

Step Hyp Ref Expression
1 logdivsum.1 F=y+i=1ylogiilogy22
2 mulog2sumlem.1 φFL
3 2cn 2
4 3 a1i φx+2
5 fzfid φx+1xFin
6 elfznn n1xn
7 6 adantl φx+n1xn
8 mucl nμn
9 7 8 syl φx+n1xμn
10 9 zred φx+n1xμn
11 10 7 nndivred φx+n1xμnn
12 11 recnd φx+n1xμnn
13 simpr φx+x+
14 6 nnrpd n1xn+
15 rpdivcl x+n+xn+
16 13 14 15 syl2an φx+n1xxn+
17 16 relogcld φx+n1xlogxn
18 17 recnd φx+n1xlogxn
19 18 sqcld φx+n1xlogxn2
20 19 halfcld φx+n1xlogxn22
21 12 20 mulcld φx+n1xμnnlogxn22
22 5 21 fsumcl φx+n=1xμnnlogxn22
23 relogcl x+logx
24 23 adantl φx+logx
25 24 recnd φx+logx
26 4 22 25 subdid φx+2n=1xμnnlogxn22logx=2n=1xμnnlogxn222logx
27 5 4 21 fsummulc2 φx+2n=1xμnnlogxn22=n=1x2μnnlogxn22
28 3 a1i φx+n1x2
29 28 12 20 mul12d φx+n1x2μnnlogxn22=μnn2logxn22
30 2ne0 20
31 30 a1i φx+n1x20
32 19 28 31 divcan2d φx+n1x2logxn22=logxn2
33 32 oveq2d φx+n1xμnn2logxn22=μnnlogxn2
34 29 33 eqtrd φx+n1x2μnnlogxn22=μnnlogxn2
35 34 sumeq2dv φx+n=1x2μnnlogxn22=n=1xμnnlogxn2
36 27 35 eqtrd φx+2n=1xμnnlogxn22=n=1xμnnlogxn2
37 36 oveq1d φx+2n=1xμnnlogxn222logx=n=1xμnnlogxn22logx
38 26 37 eqtrd φx+2n=1xμnnlogxn22logx=n=1xμnnlogxn22logx
39 38 mpteq2dva φx+2n=1xμnnlogxn22logx=x+n=1xμnnlogxn22logx
40 22 25 subcld φx+n=1xμnnlogxn22logx
41 rpssre +
42 o1const +2x+2𝑂1
43 41 3 42 mp2an x+2𝑂1
44 43 a1i φx+2𝑂1
45 emre γ
46 45 recni γ
47 mulcl γlogxnγlogxn
48 46 18 47 sylancr φx+n1xγlogxn
49 rlimcl FLL
50 2 49 syl φL
51 50 ad2antrr φx+n1xL
52 48 51 subcld φx+n1xγlogxnL
53 20 52 addcld φx+n1xlogxn22+γlogxn-L
54 12 53 mulcld φx+n1xμnnlogxn22+γlogxn-L
55 5 54 fsumcl φx+n=1xμnnlogxn22+γlogxn-L
56 12 52 mulcld φx+n1xμnnγlogxnL
57 5 56 fsumcl φx+n=1xμnnγlogxnL
58 55 25 57 sub32d φx+n=1xμnnlogxn22+γlogxn-L-logx-n=1xμnnγlogxnL=n=1xμnnlogxn22+γlogxn-L-n=1xμnnγlogxnL-logx
59 5 54 56 fsumsub φx+n=1xμnnlogxn22+γlogxn-LμnnγlogxnL=n=1xμnnlogxn22+γlogxn-Ln=1xμnnγlogxnL
60 12 53 52 subdid φx+n1xμnnlogxn22+γlogxnL-γlogxnL=μnnlogxn22+γlogxn-LμnnγlogxnL
61 20 52 pncand φx+n1xlogxn22+γlogxnL-γlogxnL=logxn22
62 61 oveq2d φx+n1xμnnlogxn22+γlogxnL-γlogxnL=μnnlogxn22
63 60 62 eqtr3d φx+n1xμnnlogxn22+γlogxn-LμnnγlogxnL=μnnlogxn22
64 63 sumeq2dv φx+n=1xμnnlogxn22+γlogxn-LμnnγlogxnL=n=1xμnnlogxn22
65 59 64 eqtr3d φx+n=1xμnnlogxn22+γlogxn-Ln=1xμnnγlogxnL=n=1xμnnlogxn22
66 65 oveq1d φx+n=1xμnnlogxn22+γlogxn-L-n=1xμnnγlogxnL-logx=n=1xμnnlogxn22logx
67 58 66 eqtrd φx+n=1xμnnlogxn22+γlogxn-L-logx-n=1xμnnγlogxnL=n=1xμnnlogxn22logx
68 67 mpteq2dva φx+n=1xμnnlogxn22+γlogxn-L-logx-n=1xμnnγlogxnL=x+n=1xμnnlogxn22logx
69 55 25 subcld φx+n=1xμnnlogxn22+γlogxn-Llogx
70 eqid logxn22+γlogxn-L=logxn22+γlogxn-L
71 eqid 12+γ+L+m=12logemm=12+γ+L+m=12logemm
72 1 2 70 71 mulog2sumlem2 φx+n=1xμnnlogxn22+γlogxn-Llogx𝑂1
73 46 a1i φx+γ
74 12 18 mulcld φx+n1xμnnlogxn
75 5 73 74 fsummulc2 φx+γn=1xμnnlogxn=n=1xγμnnlogxn
76 50 adantr φx+L
77 5 76 12 fsummulc1 φx+n=1xμnnL=n=1xμnnL
78 75 77 oveq12d φx+γn=1xμnnlogxnn=1xμnnL=n=1xγμnnlogxnn=1xμnnL
79 mulcl γμnnlogxnγμnnlogxn
80 46 74 79 sylancr φx+n1xγμnnlogxn
81 12 51 mulcld φx+n1xμnnL
82 5 80 81 fsumsub φx+n=1xγμnnlogxnμnnL=n=1xγμnnlogxnn=1xμnnL
83 46 a1i φx+n1xγ
84 83 12 18 mul12d φx+n1xγμnnlogxn=μnnγlogxn
85 84 oveq1d φx+n1xγμnnlogxnμnnL=μnnγlogxnμnnL
86 12 48 51 subdid φx+n1xμnnγlogxnL=μnnγlogxnμnnL
87 85 86 eqtr4d φx+n1xγμnnlogxnμnnL=μnnγlogxnL
88 87 sumeq2dv φx+n=1xγμnnlogxnμnnL=n=1xμnnγlogxnL
89 78 82 88 3eqtr2d φx+γn=1xμnnlogxnn=1xμnnL=n=1xμnnγlogxnL
90 89 mpteq2dva φx+γn=1xμnnlogxnn=1xμnnL=x+n=1xμnnγlogxnL
91 5 74 fsumcl φx+n=1xμnnlogxn
92 mulcl γn=1xμnnlogxnγn=1xμnnlogxn
93 46 91 92 sylancr φx+γn=1xμnnlogxn
94 5 12 fsumcl φx+n=1xμnn
95 94 76 mulcld φx+n=1xμnnL
96 46 a1i φγ
97 o1const +γx+γ𝑂1
98 41 96 97 sylancr φx+γ𝑂1
99 mulogsum x+n=1xμnnlogxn𝑂1
100 99 a1i φx+n=1xμnnlogxn𝑂1
101 73 91 98 100 o1mul2 φx+γn=1xμnnlogxn𝑂1
102 mudivsum x+n=1xμnn𝑂1
103 102 a1i φx+n=1xμnn𝑂1
104 o1const +Lx+L𝑂1
105 41 50 104 sylancr φx+L𝑂1
106 94 76 103 105 o1mul2 φx+n=1xμnnL𝑂1
107 93 95 101 106 o1sub2 φx+γn=1xμnnlogxnn=1xμnnL𝑂1
108 90 107 eqeltrrd φx+n=1xμnnγlogxnL𝑂1
109 69 57 72 108 o1sub2 φx+n=1xμnnlogxn22+γlogxn-L-logx-n=1xμnnγlogxnL𝑂1
110 68 109 eqeltrrd φx+n=1xμnnlogxn22logx𝑂1
111 4 40 44 110 o1mul2 φx+2n=1xμnnlogxn22logx𝑂1
112 39 111 eqeltrrd φx+n=1xμnnlogxn22logx𝑂1