Metamath Proof Explorer


Theorem mulog2sumlem3

Description: Lemma for mulog2sum . (Contributed by Mario Carneiro, 13-May-2016)

Ref Expression
Hypotheses logdivsum.1 F = y + i = 1 y log i i log y 2 2
mulog2sumlem.1 φ F L
Assertion mulog2sumlem3 φ x + n = 1 x μ n n log x n 2 2 log x 𝑂1

Proof

Step Hyp Ref Expression
1 logdivsum.1 F = y + i = 1 y log i i log y 2 2
2 mulog2sumlem.1 φ F L
3 2cn 2
4 3 a1i φ x + 2
5 fzfid φ x + 1 x Fin
6 elfznn n 1 x n
7 6 adantl φ x + n 1 x n
8 mucl n μ n
9 7 8 syl φ x + n 1 x μ n
10 9 zred φ x + n 1 x μ n
11 10 7 nndivred φ x + n 1 x μ n n
12 11 recnd φ x + n 1 x μ n n
13 simpr φ x + x +
14 6 nnrpd n 1 x n +
15 rpdivcl x + n + x n +
16 13 14 15 syl2an φ x + n 1 x x n +
17 16 relogcld φ x + n 1 x log x n
18 17 recnd φ x + n 1 x log x n
19 18 sqcld φ x + n 1 x log x n 2
20 19 halfcld φ x + n 1 x log x n 2 2
21 12 20 mulcld φ x + n 1 x μ n n log x n 2 2
22 5 21 fsumcl φ x + n = 1 x μ n n log x n 2 2
23 relogcl x + log x
24 23 adantl φ x + log x
25 24 recnd φ x + log x
26 4 22 25 subdid φ x + 2 n = 1 x μ n n log x n 2 2 log x = 2 n = 1 x μ n n log x n 2 2 2 log x
27 5 4 21 fsummulc2 φ x + 2 n = 1 x μ n n log x n 2 2 = n = 1 x 2 μ n n log x n 2 2
28 3 a1i φ x + n 1 x 2
29 28 12 20 mul12d φ x + n 1 x 2 μ n n log x n 2 2 = μ n n 2 log x n 2 2
30 2ne0 2 0
31 30 a1i φ x + n 1 x 2 0
32 19 28 31 divcan2d φ x + n 1 x 2 log x n 2 2 = log x n 2
33 32 oveq2d φ x + n 1 x μ n n 2 log x n 2 2 = μ n n log x n 2
34 29 33 eqtrd φ x + n 1 x 2 μ n n log x n 2 2 = μ n n log x n 2
35 34 sumeq2dv φ x + n = 1 x 2 μ n n log x n 2 2 = n = 1 x μ n n log x n 2
36 27 35 eqtrd φ x + 2 n = 1 x μ n n log x n 2 2 = n = 1 x μ n n log x n 2
37 36 oveq1d φ x + 2 n = 1 x μ n n log x n 2 2 2 log x = n = 1 x μ n n log x n 2 2 log x
38 26 37 eqtrd φ x + 2 n = 1 x μ n n log x n 2 2 log x = n = 1 x μ n n log x n 2 2 log x
39 38 mpteq2dva φ x + 2 n = 1 x μ n n log x n 2 2 log x = x + n = 1 x μ n n log x n 2 2 log x
40 22 25 subcld φ x + n = 1 x μ n n log x n 2 2 log x
41 rpssre +
42 o1const + 2 x + 2 𝑂1
43 41 3 42 mp2an x + 2 𝑂1
44 43 a1i φ x + 2 𝑂1
45 emre γ
46 45 recni γ
47 mulcl γ log x n γ log x n
48 46 18 47 sylancr φ x + n 1 x γ log x n
49 rlimcl F L L
50 2 49 syl φ L
51 50 ad2antrr φ x + n 1 x L
52 48 51 subcld φ x + n 1 x γ log x n L
53 20 52 addcld φ x + n 1 x log x n 2 2 + γ log x n - L
54 12 53 mulcld φ x + n 1 x μ n n log x n 2 2 + γ log x n - L
55 5 54 fsumcl φ x + n = 1 x μ n n log x n 2 2 + γ log x n - L
56 12 52 mulcld φ x + n 1 x μ n n γ log x n L
57 5 56 fsumcl φ x + n = 1 x μ n n γ log x n L
58 55 25 57 sub32d φ x + n = 1 x μ n n log x n 2 2 + γ log x n - L - log x - n = 1 x μ n n γ log x n L = n = 1 x μ n n log x n 2 2 + γ log x n - L - n = 1 x μ n n γ log x n L - log x
59 5 54 56 fsumsub φ x + n = 1 x μ n n log x n 2 2 + γ log x n - L μ n n γ log x n L = n = 1 x μ n n log x n 2 2 + γ log x n - L n = 1 x μ n n γ log x n L
60 12 53 52 subdid φ x + n 1 x μ n n log x n 2 2 + γ log x n L - γ log x n L = μ n n log x n 2 2 + γ log x n - L μ n n γ log x n L
61 20 52 pncand φ x + n 1 x log x n 2 2 + γ log x n L - γ log x n L = log x n 2 2
62 61 oveq2d φ x + n 1 x μ n n log x n 2 2 + γ log x n L - γ log x n L = μ n n log x n 2 2
63 60 62 eqtr3d φ x + n 1 x μ n n log x n 2 2 + γ log x n - L μ n n γ log x n L = μ n n log x n 2 2
64 63 sumeq2dv φ x + n = 1 x μ n n log x n 2 2 + γ log x n - L μ n n γ log x n L = n = 1 x μ n n log x n 2 2
65 59 64 eqtr3d φ x + n = 1 x μ n n log x n 2 2 + γ log x n - L n = 1 x μ n n γ log x n L = n = 1 x μ n n log x n 2 2
66 65 oveq1d φ x + n = 1 x μ n n log x n 2 2 + γ log x n - L - n = 1 x μ n n γ log x n L - log x = n = 1 x μ n n log x n 2 2 log x
67 58 66 eqtrd φ x + n = 1 x μ n n log x n 2 2 + γ log x n - L - log x - n = 1 x μ n n γ log x n L = n = 1 x μ n n log x n 2 2 log x
68 67 mpteq2dva φ x + n = 1 x μ n n log x n 2 2 + γ log x n - L - log x - n = 1 x μ n n γ log x n L = x + n = 1 x μ n n log x n 2 2 log x
69 55 25 subcld φ x + n = 1 x μ n n log x n 2 2 + γ log x n - L log x
70 eqid log x n 2 2 + γ log x n - L = log x n 2 2 + γ log x n - L
71 eqid 1 2 + γ + L + m = 1 2 log e m m = 1 2 + γ + L + m = 1 2 log e m m
72 1 2 70 71 mulog2sumlem2 φ x + n = 1 x μ n n log x n 2 2 + γ log x n - L log x 𝑂1
73 46 a1i φ x + γ
74 12 18 mulcld φ x + n 1 x μ n n log x n
75 5 73 74 fsummulc2 φ x + γ n = 1 x μ n n log x n = n = 1 x γ μ n n log x n
76 50 adantr φ x + L
77 5 76 12 fsummulc1 φ x + n = 1 x μ n n L = n = 1 x μ n n L
78 75 77 oveq12d φ x + γ n = 1 x μ n n log x n n = 1 x μ n n L = n = 1 x γ μ n n log x n n = 1 x μ n n L
79 mulcl γ μ n n log x n γ μ n n log x n
80 46 74 79 sylancr φ x + n 1 x γ μ n n log x n
81 12 51 mulcld φ x + n 1 x μ n n L
82 5 80 81 fsumsub φ x + n = 1 x γ μ n n log x n μ n n L = n = 1 x γ μ n n log x n n = 1 x μ n n L
83 46 a1i φ x + n 1 x γ
84 83 12 18 mul12d φ x + n 1 x γ μ n n log x n = μ n n γ log x n
85 84 oveq1d φ x + n 1 x γ μ n n log x n μ n n L = μ n n γ log x n μ n n L
86 12 48 51 subdid φ x + n 1 x μ n n γ log x n L = μ n n γ log x n μ n n L
87 85 86 eqtr4d φ x + n 1 x γ μ n n log x n μ n n L = μ n n γ log x n L
88 87 sumeq2dv φ x + n = 1 x γ μ n n log x n μ n n L = n = 1 x μ n n γ log x n L
89 78 82 88 3eqtr2d φ x + γ n = 1 x μ n n log x n n = 1 x μ n n L = n = 1 x μ n n γ log x n L
90 89 mpteq2dva φ x + γ n = 1 x μ n n log x n n = 1 x μ n n L = x + n = 1 x μ n n γ log x n L
91 5 74 fsumcl φ x + n = 1 x μ n n log x n
92 mulcl γ n = 1 x μ n n log x n γ n = 1 x μ n n log x n
93 46 91 92 sylancr φ x + γ n = 1 x μ n n log x n
94 5 12 fsumcl φ x + n = 1 x μ n n
95 94 76 mulcld φ x + n = 1 x μ n n L
96 46 a1i φ γ
97 o1const + γ x + γ 𝑂1
98 41 96 97 sylancr φ x + γ 𝑂1
99 mulogsum x + n = 1 x μ n n log x n 𝑂1
100 99 a1i φ x + n = 1 x μ n n log x n 𝑂1
101 73 91 98 100 o1mul2 φ x + γ n = 1 x μ n n log x n 𝑂1
102 mudivsum x + n = 1 x μ n n 𝑂1
103 102 a1i φ x + n = 1 x μ n n 𝑂1
104 o1const + L x + L 𝑂1
105 41 50 104 sylancr φ x + L 𝑂1
106 94 76 103 105 o1mul2 φ x + n = 1 x μ n n L 𝑂1
107 93 95 101 106 o1sub2 φ x + γ n = 1 x μ n n log x n n = 1 x μ n n L 𝑂1
108 90 107 eqeltrrd φ x + n = 1 x μ n n γ log x n L 𝑂1
109 69 57 72 108 o1sub2 φ x + n = 1 x μ n n log x n 2 2 + γ log x n - L - log x - n = 1 x μ n n γ log x n L 𝑂1
110 68 109 eqeltrrd φ x + n = 1 x μ n n log x n 2 2 log x 𝑂1
111 4 40 44 110 o1mul2 φ x + 2 n = 1 x μ n n log x n 2 2 log x 𝑂1
112 39 111 eqeltrrd φ x + n = 1 x μ n n log x n 2 2 log x 𝑂1