| Step |
Hyp |
Ref |
Expression |
| 1 |
|
naddcnff |
|
| 2 |
|
simpr |
|
| 3 |
|
peano1 |
|
| 4 |
|
fconst6g |
|
| 5 |
3 4
|
mp1i |
|
| 6 |
|
simpl |
|
| 7 |
3
|
a1i |
|
| 8 |
6 7
|
fczfsuppd |
|
| 9 |
|
simpr |
|
| 10 |
9
|
eleq2d |
|
| 11 |
|
eqid |
|
| 12 |
|
omelon |
|
| 13 |
12
|
a1i |
|
| 14 |
11 13 6
|
cantnfs |
|
| 15 |
10 14
|
bitrd |
|
| 16 |
5 8 15
|
mpbir2and |
|
| 17 |
16
|
adantr |
|
| 18 |
|
simpl |
|
| 19 |
18
|
adantl |
|
| 20 |
|
simpr |
|
| 21 |
20
|
adantl |
|
| 22 |
19 21
|
ovresd |
|
| 23 |
9
|
eleq2d |
|
| 24 |
11 13 6
|
cantnfs |
|
| 25 |
23 24
|
bitrd |
|
| 26 |
25
|
biimpd |
|
| 27 |
|
simpl |
|
| 28 |
18 26 27
|
syl56 |
|
| 29 |
28
|
imp |
|
| 30 |
29
|
ffnd |
|
| 31 |
|
fnconstg |
|
| 32 |
3 31
|
mp1i |
|
| 33 |
6
|
adantr |
|
| 34 |
|
inidm |
|
| 35 |
30 32 33 33 34
|
offn |
|
| 36 |
30
|
adantr |
|
| 37 |
3 31
|
mp1i |
|
| 38 |
|
simplll |
|
| 39 |
|
simpr |
|
| 40 |
|
fnfvof |
|
| 41 |
36 37 38 39 40
|
syl22anc |
|
| 42 |
3
|
a1i |
|
| 43 |
|
fvconst2g |
|
| 44 |
42 39 43
|
syl2anc |
|
| 45 |
44
|
oveq2d |
|
| 46 |
29
|
ffvelcdmda |
|
| 47 |
|
nnon |
|
| 48 |
|
oa0 |
|
| 49 |
46 47 48
|
3syl |
|
| 50 |
41 45 49
|
3eqtrd |
|
| 51 |
35 30 50
|
eqfnfvd |
|
| 52 |
22 51
|
eqtr2d |
|
| 53 |
52
|
expr |
|
| 54 |
17 53
|
jcai |
|
| 55 |
|
oveq2 |
|
| 56 |
55
|
rspceeqv |
|
| 57 |
54 56
|
syl |
|
| 58 |
|
oveq1 |
|
| 59 |
58
|
eqeq2d |
|
| 60 |
59
|
rexbidv |
|
| 61 |
60
|
rspcev |
|
| 62 |
2 57 61
|
syl2anc |
|
| 63 |
62
|
ralrimiva |
|
| 64 |
|
foov |
|
| 65 |
1 63 64
|
sylanbrc |
|