Description: Addition of Cantor normal forms is a function onto Cantor normal forms. (Contributed by RP, 2-Jan-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | naddcnffo | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | naddcnff | |
|
2 | simpr | |
|
3 | peano1 | |
|
4 | fconst6g | |
|
5 | 3 4 | mp1i | |
6 | simpl | |
|
7 | 3 | a1i | |
8 | 6 7 | fczfsuppd | |
9 | simpr | |
|
10 | 9 | eleq2d | |
11 | eqid | |
|
12 | omelon | |
|
13 | 12 | a1i | |
14 | 11 13 6 | cantnfs | |
15 | 10 14 | bitrd | |
16 | 5 8 15 | mpbir2and | |
17 | 16 | adantr | |
18 | simpl | |
|
19 | 18 | adantl | |
20 | simpr | |
|
21 | 20 | adantl | |
22 | 19 21 | ovresd | |
23 | 9 | eleq2d | |
24 | 11 13 6 | cantnfs | |
25 | 23 24 | bitrd | |
26 | 25 | biimpd | |
27 | simpl | |
|
28 | 18 26 27 | syl56 | |
29 | 28 | imp | |
30 | 29 | ffnd | |
31 | fnconstg | |
|
32 | 3 31 | mp1i | |
33 | 6 | adantr | |
34 | inidm | |
|
35 | 30 32 33 33 34 | offn | |
36 | 30 | adantr | |
37 | 3 31 | mp1i | |
38 | simplll | |
|
39 | simpr | |
|
40 | fnfvof | |
|
41 | 36 37 38 39 40 | syl22anc | |
42 | 3 | a1i | |
43 | fvconst2g | |
|
44 | 42 39 43 | syl2anc | |
45 | 44 | oveq2d | |
46 | 29 | ffvelcdmda | |
47 | nnon | |
|
48 | oa0 | |
|
49 | 46 47 48 | 3syl | |
50 | 41 45 49 | 3eqtrd | |
51 | 35 30 50 | eqfnfvd | |
52 | 22 51 | eqtr2d | |
53 | 52 | expr | |
54 | 17 53 | jcai | |
55 | oveq2 | |
|
56 | 55 | rspceeqv | |
57 | 54 56 | syl | |
58 | oveq1 | |
|
59 | 58 | eqeq2d | |
60 | 59 | rexbidv | |
61 | 60 | rspcev | |
62 | 2 57 61 | syl2anc | |
63 | 62 | ralrimiva | |
64 | foov | |
|
65 | 1 63 64 | sylanbrc | |