| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nmcopex.1 |  | 
						
							| 2 |  | nmcopex.2 |  | 
						
							| 3 |  | 0le0 |  | 
						
							| 4 | 3 | a1i |  | 
						
							| 5 |  | fveq2 |  | 
						
							| 6 | 1 | lnop0i |  | 
						
							| 7 | 5 6 | eqtrdi |  | 
						
							| 8 | 7 | fveq2d |  | 
						
							| 9 |  | norm0 |  | 
						
							| 10 | 8 9 | eqtrdi |  | 
						
							| 11 |  | fveq2 |  | 
						
							| 12 | 11 9 | eqtrdi |  | 
						
							| 13 | 12 | oveq2d |  | 
						
							| 14 | 1 2 | nmcopexi |  | 
						
							| 15 | 14 | recni |  | 
						
							| 16 | 15 | mul01i |  | 
						
							| 17 | 13 16 | eqtrdi |  | 
						
							| 18 | 4 10 17 | 3brtr4d |  | 
						
							| 19 | 18 | adantl |  | 
						
							| 20 |  | normcl |  | 
						
							| 21 | 20 | adantr |  | 
						
							| 22 |  | normne0 |  | 
						
							| 23 | 22 | biimpar |  | 
						
							| 24 | 21 23 | rereccld |  | 
						
							| 25 |  | normgt0 |  | 
						
							| 26 | 25 | biimpa |  | 
						
							| 27 | 21 26 | recgt0d |  | 
						
							| 28 |  | 0re |  | 
						
							| 29 |  | ltle |  | 
						
							| 30 | 28 29 | mpan |  | 
						
							| 31 | 24 27 30 | sylc |  | 
						
							| 32 | 24 31 | absidd |  | 
						
							| 33 | 32 | oveq1d |  | 
						
							| 34 | 24 | recnd |  | 
						
							| 35 |  | simpl |  | 
						
							| 36 | 1 | lnopmuli |  | 
						
							| 37 | 34 35 36 | syl2anc |  | 
						
							| 38 | 37 | fveq2d |  | 
						
							| 39 | 1 | lnopfi |  | 
						
							| 40 | 39 | ffvelcdmi |  | 
						
							| 41 | 40 | adantr |  | 
						
							| 42 |  | norm-iii |  | 
						
							| 43 | 34 41 42 | syl2anc |  | 
						
							| 44 | 38 43 | eqtrd |  | 
						
							| 45 |  | normcl |  | 
						
							| 46 | 40 45 | syl |  | 
						
							| 47 | 46 | adantr |  | 
						
							| 48 | 47 | recnd |  | 
						
							| 49 | 21 | recnd |  | 
						
							| 50 | 48 49 23 | divrec2d |  | 
						
							| 51 | 33 44 50 | 3eqtr4rd |  | 
						
							| 52 |  | hvmulcl |  | 
						
							| 53 | 34 35 52 | syl2anc |  | 
						
							| 54 |  | normcl |  | 
						
							| 55 | 53 54 | syl |  | 
						
							| 56 |  | norm1 |  | 
						
							| 57 |  | eqle |  | 
						
							| 58 | 55 56 57 | syl2anc |  | 
						
							| 59 |  | nmoplb |  | 
						
							| 60 | 39 59 | mp3an1 |  | 
						
							| 61 | 53 58 60 | syl2anc |  | 
						
							| 62 | 51 61 | eqbrtrd |  | 
						
							| 63 | 14 | a1i |  | 
						
							| 64 |  | ledivmul2 |  | 
						
							| 65 | 47 63 21 26 64 | syl112anc |  | 
						
							| 66 | 62 65 | mpbid |  | 
						
							| 67 | 19 66 | pm2.61dane |  |