Metamath Proof Explorer


Theorem nmoleub2lem

Description: Lemma for nmoleub2a and similar theorems. (Contributed by Mario Carneiro, 19-Oct-2015)

Ref Expression
Hypotheses nmoleub2.n N=SnormOpT
nmoleub2.v V=BaseS
nmoleub2.l L=normS
nmoleub2.m M=normT
nmoleub2.g G=ScalarS
nmoleub2.w K=BaseG
nmoleub2.s φSNrmModCMod
nmoleub2.t φTNrmModCMod
nmoleub2.f φFSLMHomT
nmoleub2.a φA*
nmoleub2.r φR+
nmoleub2lem.5 φxVψMFxRA0A
nmoleub2lem.6 φxVψMFxRAAyVy0SMFyALy
nmoleub2lem.7 φxVψLxR
Assertion nmoleub2lem φNFAxVψMFxRA

Proof

Step Hyp Ref Expression
1 nmoleub2.n N=SnormOpT
2 nmoleub2.v V=BaseS
3 nmoleub2.l L=normS
4 nmoleub2.m M=normT
5 nmoleub2.g G=ScalarS
6 nmoleub2.w K=BaseG
7 nmoleub2.s φSNrmModCMod
8 nmoleub2.t φTNrmModCMod
9 nmoleub2.f φFSLMHomT
10 nmoleub2.a φA*
11 nmoleub2.r φR+
12 nmoleub2lem.5 φxVψMFxRA0A
13 nmoleub2lem.6 φxVψMFxRAAyVy0SMFyALy
14 nmoleub2lem.7 φxVψLxR
15 14 adantlr φNFAxVψLxR
16 8 elin1d φTNrmMod
17 nlmngp TNrmModTNrmGrp
18 16 17 syl φTNrmGrp
19 18 ad2antrr φNFAxVLxRTNrmGrp
20 eqid BaseT=BaseT
21 2 20 lmhmf FSLMHomTF:VBaseT
22 9 21 syl φF:VBaseT
23 22 ad2antrr φNFAxVLxRF:VBaseT
24 simprl φNFAxVLxRxV
25 23 24 ffvelcdmd φNFAxVLxRFxBaseT
26 20 4 nmcl TNrmGrpFxBaseTMFx
27 19 25 26 syl2anc φNFAxVLxRMFx
28 11 ad2antrr φNFAxVLxRR+
29 27 28 rerpdivcld φNFAxVLxRMFxR
30 29 rexrd φNFAxVLxRMFxR*
31 7 elin1d φSNrmMod
32 nlmngp SNrmModSNrmGrp
33 31 32 syl φSNrmGrp
34 lmghm FSLMHomTFSGrpHomT
35 9 34 syl φFSGrpHomT
36 1 nmocl SNrmGrpTNrmGrpFSGrpHomTNF*
37 33 18 35 36 syl3anc φNF*
38 37 ad2antrr φNFAxVLxRNF*
39 10 ad2antrr φNFAxVLxRA*
40 28 rpred φNFAxVLxRR
41 rexmul MFxRRMFxR𝑒R=MFxRR
42 29 40 41 syl2anc φNFAxVLxRMFxR𝑒R=MFxRR
43 27 recnd φNFAxVLxRMFx
44 40 recnd φNFAxVLxRR
45 28 rpne0d φNFAxVLxRR0
46 43 44 45 divcan1d φNFAxVLxRMFxRR=MFx
47 42 46 eqtrd φNFAxVLxRMFxR𝑒R=MFx
48 27 rexrd φNFAxVLxRMFx*
49 33 ad2antrr φNFAxVLxRSNrmGrp
50 2 3 nmcl SNrmGrpxVLx
51 49 24 50 syl2anc φNFAxVLxRLx
52 51 rexrd φNFAxVLxRLx*
53 38 52 xmulcld φNFAxVLxRNF𝑒Lx*
54 28 rpxrd φNFAxVLxRR*
55 38 54 xmulcld φNFAxVLxRNF𝑒R*
56 35 ad2antrr φNFAxVLxRFSGrpHomT
57 1 2 3 4 nmoix SNrmGrpTNrmGrpFSGrpHomTxVMFxNF𝑒Lx
58 49 19 56 24 57 syl31anc φNFAxVLxRMFxNF𝑒Lx
59 1 nmoge0 SNrmGrpTNrmGrpFSGrpHomT0NF
60 33 18 35 59 syl3anc φ0NF
61 37 60 jca φNF*0NF
62 61 ad2antrr φNFAxVLxRNF*0NF
63 simprr φNFAxVLxRLxR
64 xlemul2a Lx*R*NF*0NFLxRNF𝑒LxNF𝑒R
65 52 54 62 63 64 syl31anc φNFAxVLxRNF𝑒LxNF𝑒R
66 48 53 55 58 65 xrletrd φNFAxVLxRMFxNF𝑒R
67 47 66 eqbrtrd φNFAxVLxRMFxR𝑒RNF𝑒R
68 xlemul1 MFxR*NF*R+MFxRNFMFxR𝑒RNF𝑒R
69 30 38 28 68 syl3anc φNFAxVLxRMFxRNFMFxR𝑒RNF𝑒R
70 67 69 mpbird φNFAxVLxRMFxRNF
71 simplr φNFAxVLxRNFA
72 30 38 39 70 71 xrletrd φNFAxVLxRMFxRA
73 72 expr φNFAxVLxRMFxRA
74 15 73 syld φNFAxVψMFxRA
75 74 ralrimiva φNFAxVψMFxRA
76 eqid 0S=0S
77 33 ad2antrr φxVψMFxRAASNrmGrp
78 18 ad2antrr φxVψMFxRAATNrmGrp
79 35 ad2antrr φxVψMFxRAAFSGrpHomT
80 simpr φxVψMFxRAAA
81 12 adantr φxVψMFxRAA0A
82 1 2 3 4 76 77 78 79 80 81 13 nmolb2d φxVψMFxRAANFA
83 37 ad2antrr φxVψMFxRAA=+∞NF*
84 pnfge NF*NF+∞
85 83 84 syl φxVψMFxRAA=+∞NF+∞
86 simpr φxVψMFxRAA=+∞A=+∞
87 85 86 breqtrrd φxVψMFxRAA=+∞NFA
88 10 adantr φxVψMFxRAA*
89 ge0nemnf A*0AA−∞
90 88 12 89 syl2anc φxVψMFxRAA−∞
91 88 90 jca φxVψMFxRAA*A−∞
92 xrnemnf A*A−∞AA=+∞
93 91 92 sylib φxVψMFxRAAA=+∞
94 82 87 93 mpjaodan φxVψMFxRANFA
95 75 94 impbida φNFAxVψMFxRA