Metamath Proof Explorer


Theorem nmopun

Description: Norm of a unitary Hilbert space operator. (Contributed by NM, 25-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion nmopun 0TUniOpnormopT=1

Proof

Step Hyp Ref Expression
1 unoplin TUniOpTLinOp
2 lnopf TLinOpT:
3 1 2 syl TUniOpT:
4 nmopval T:normopT=supx|ynormy1x=normTy*<
5 3 4 syl TUniOpnormopT=supx|ynormy1x=normTy*<
6 5 adantl 0TUniOpnormopT=supx|ynormy1x=normTy*<
7 nmopsetretHIL T:x|ynormy1x=normTy
8 ressxr *
9 7 8 sstrdi T:x|ynormy1x=normTy*
10 3 9 syl TUniOpx|ynormy1x=normTy*
11 10 adantl 0TUniOpx|ynormy1x=normTy*
12 1xr 1*
13 11 12 jctir 0TUniOpx|ynormy1x=normTy*1*
14 vex zV
15 eqeq1 x=zx=normTyz=normTy
16 15 anbi2d x=znormy1x=normTynormy1z=normTy
17 16 rexbidv x=zynormy1x=normTyynormy1z=normTy
18 14 17 elab zx|ynormy1x=normTyynormy1z=normTy
19 unopnorm TUniOpynormTy=normy
20 19 eqeq2d TUniOpyz=normTyz=normy
21 20 anbi2d TUniOpynormy1z=normTynormy1z=normy
22 breq1 z=normyz1normy1
23 22 biimparc normy1z=normyz1
24 21 23 syl6bi TUniOpynormy1z=normTyz1
25 24 rexlimdva TUniOpynormy1z=normTyz1
26 25 imp TUniOpynormy1z=normTyz1
27 18 26 sylan2b TUniOpzx|ynormy1x=normTyz1
28 27 ralrimiva TUniOpzx|ynormy1x=normTyz1
29 28 adantl 0TUniOpzx|ynormy1x=normTyz1
30 hne0 0yy0
31 norm1hex yy0ynormy=1
32 30 31 sylbb 0ynormy=1
33 32 adantr 0TUniOpynormy=1
34 1le1 11
35 breq1 normy=1normy111
36 34 35 mpbiri normy=1normy1
37 36 a1i TUniOpynormy=1normy1
38 19 adantr TUniOpynormy=1normTy=normy
39 eqeq2 normy=1normTy=normynormTy=1
40 39 adantl TUniOpynormy=1normTy=normynormTy=1
41 38 40 mpbid TUniOpynormy=1normTy=1
42 41 eqcomd TUniOpynormy=11=normTy
43 42 ex TUniOpynormy=11=normTy
44 37 43 jcad TUniOpynormy=1normy11=normTy
45 44 adantll 0TUniOpynormy=1normy11=normTy
46 45 reximdva 0TUniOpynormy=1ynormy11=normTy
47 33 46 mpd 0TUniOpynormy11=normTy
48 1ex 1V
49 eqeq1 x=1x=normTy1=normTy
50 49 anbi2d x=1normy1x=normTynormy11=normTy
51 50 rexbidv x=1ynormy1x=normTyynormy11=normTy
52 48 51 elab 1x|ynormy1x=normTyynormy11=normTy
53 47 52 sylibr 0TUniOp1x|ynormy1x=normTy
54 53 adantr 0TUniOpz1x|ynormy1x=normTy
55 breq2 w=1z<wz<1
56 55 rspcev 1x|ynormy1x=normTyz<1wx|ynormy1x=normTyz<w
57 54 56 sylan 0TUniOpzz<1wx|ynormy1x=normTyz<w
58 57 ex 0TUniOpzz<1wx|ynormy1x=normTyz<w
59 58 ralrimiva 0TUniOpzz<1wx|ynormy1x=normTyz<w
60 supxr2 x|ynormy1x=normTy*1*zx|ynormy1x=normTyz1zz<1wx|ynormy1x=normTyz<wsupx|ynormy1x=normTy*<=1
61 13 29 59 60 syl12anc 0TUniOpsupx|ynormy1x=normTy*<=1
62 6 61 eqtrd 0TUniOpnormopT=1