| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nmotri.1 |
|
| 2 |
|
nmotri.p |
|
| 3 |
|
eqid |
|
| 4 |
|
eqid |
|
| 5 |
|
eqid |
|
| 6 |
|
eqid |
|
| 7 |
|
nghmrcl1 |
|
| 8 |
7
|
3ad2ant2 |
|
| 9 |
|
nghmrcl2 |
|
| 10 |
9
|
3ad2ant2 |
|
| 11 |
|
id |
|
| 12 |
|
nghmghm |
|
| 13 |
|
nghmghm |
|
| 14 |
2
|
ghmplusg |
|
| 15 |
11 12 13 14
|
syl3an |
|
| 16 |
1
|
nghmcl |
|
| 17 |
16
|
3ad2ant2 |
|
| 18 |
1
|
nghmcl |
|
| 19 |
18
|
3ad2ant3 |
|
| 20 |
17 19
|
readdcld |
|
| 21 |
12
|
3ad2ant2 |
|
| 22 |
1
|
nmoge0 |
|
| 23 |
8 10 21 22
|
syl3anc |
|
| 24 |
13
|
3ad2ant3 |
|
| 25 |
1
|
nmoge0 |
|
| 26 |
8 10 24 25
|
syl3anc |
|
| 27 |
17 19 23 26
|
addge0d |
|
| 28 |
10
|
adantr |
|
| 29 |
|
ngpgrp |
|
| 30 |
28 29
|
syl |
|
| 31 |
21
|
adantr |
|
| 32 |
|
eqid |
|
| 33 |
3 32
|
ghmf |
|
| 34 |
31 33
|
syl |
|
| 35 |
|
simprl |
|
| 36 |
34 35
|
ffvelcdmd |
|
| 37 |
24
|
adantr |
|
| 38 |
3 32
|
ghmf |
|
| 39 |
37 38
|
syl |
|
| 40 |
39 35
|
ffvelcdmd |
|
| 41 |
32 2
|
grpcl |
|
| 42 |
30 36 40 41
|
syl3anc |
|
| 43 |
32 5
|
nmcl |
|
| 44 |
28 42 43
|
syl2anc |
|
| 45 |
32 5
|
nmcl |
|
| 46 |
28 36 45
|
syl2anc |
|
| 47 |
32 5
|
nmcl |
|
| 48 |
28 40 47
|
syl2anc |
|
| 49 |
46 48
|
readdcld |
|
| 50 |
17
|
adantr |
|
| 51 |
|
simpl |
|
| 52 |
3 4
|
nmcl |
|
| 53 |
8 51 52
|
syl2an |
|
| 54 |
50 53
|
remulcld |
|
| 55 |
19
|
adantr |
|
| 56 |
55 53
|
remulcld |
|
| 57 |
54 56
|
readdcld |
|
| 58 |
32 5 2
|
nmtri |
|
| 59 |
28 36 40 58
|
syl3anc |
|
| 60 |
|
simpl2 |
|
| 61 |
1 3 4 5
|
nmoi |
|
| 62 |
60 35 61
|
syl2anc |
|
| 63 |
|
simpl3 |
|
| 64 |
1 3 4 5
|
nmoi |
|
| 65 |
63 35 64
|
syl2anc |
|
| 66 |
46 48 54 56 62 65
|
le2addd |
|
| 67 |
44 49 57 59 66
|
letrd |
|
| 68 |
34
|
ffnd |
|
| 69 |
39
|
ffnd |
|
| 70 |
|
fvexd |
|
| 71 |
|
fnfvof |
|
| 72 |
68 69 70 35 71
|
syl22anc |
|
| 73 |
72
|
fveq2d |
|
| 74 |
50
|
recnd |
|
| 75 |
55
|
recnd |
|
| 76 |
53
|
recnd |
|
| 77 |
74 75 76
|
adddird |
|
| 78 |
67 73 77
|
3brtr4d |
|
| 79 |
1 3 4 5 6 8 10 15 20 27 78
|
nmolb2d |
|