Database
BASIC TOPOLOGY
Metric spaces
Normed space homomorphisms (bounded linear operators)
nmotri
Next ⟩
nghmplusg
Metamath Proof Explorer
Ascii
Unicode
Theorem
nmotri
Description:
Triangle inequality for the operator norm.
(Contributed by
Mario Carneiro
, 20-Oct-2015)
Ref
Expression
Hypotheses
nmotri.1
⊢
N
=
S
normOp
T
nmotri.p
⊢
+
˙
=
+
T
Assertion
nmotri
⊢
T
∈
Abel
∧
F
∈
S
NGHom
T
∧
G
∈
S
NGHom
T
→
N
F
+
˙
f
G
≤
N
F
+
N
G
Proof
Step
Hyp
Ref
Expression
1
nmotri.1
⊢
N
=
S
normOp
T
2
nmotri.p
⊢
+
˙
=
+
T
3
eqid
⊢
Base
S
=
Base
S
4
eqid
⊢
norm
S
=
norm
S
5
eqid
⊢
norm
T
=
norm
T
6
eqid
⊢
0
S
=
0
S
7
nghmrcl1
⊢
F
∈
S
NGHom
T
→
S
∈
NrmGrp
8
7
3ad2ant2
⊢
T
∈
Abel
∧
F
∈
S
NGHom
T
∧
G
∈
S
NGHom
T
→
S
∈
NrmGrp
9
nghmrcl2
⊢
F
∈
S
NGHom
T
→
T
∈
NrmGrp
10
9
3ad2ant2
⊢
T
∈
Abel
∧
F
∈
S
NGHom
T
∧
G
∈
S
NGHom
T
→
T
∈
NrmGrp
11
id
⊢
T
∈
Abel
→
T
∈
Abel
12
nghmghm
⊢
F
∈
S
NGHom
T
→
F
∈
S
GrpHom
T
13
nghmghm
⊢
G
∈
S
NGHom
T
→
G
∈
S
GrpHom
T
14
2
ghmplusg
⊢
T
∈
Abel
∧
F
∈
S
GrpHom
T
∧
G
∈
S
GrpHom
T
→
F
+
˙
f
G
∈
S
GrpHom
T
15
11
12
13
14
syl3an
⊢
T
∈
Abel
∧
F
∈
S
NGHom
T
∧
G
∈
S
NGHom
T
→
F
+
˙
f
G
∈
S
GrpHom
T
16
1
nghmcl
⊢
F
∈
S
NGHom
T
→
N
F
∈
ℝ
17
16
3ad2ant2
⊢
T
∈
Abel
∧
F
∈
S
NGHom
T
∧
G
∈
S
NGHom
T
→
N
F
∈
ℝ
18
1
nghmcl
⊢
G
∈
S
NGHom
T
→
N
G
∈
ℝ
19
18
3ad2ant3
⊢
T
∈
Abel
∧
F
∈
S
NGHom
T
∧
G
∈
S
NGHom
T
→
N
G
∈
ℝ
20
17
19
readdcld
⊢
T
∈
Abel
∧
F
∈
S
NGHom
T
∧
G
∈
S
NGHom
T
→
N
F
+
N
G
∈
ℝ
21
12
3ad2ant2
⊢
T
∈
Abel
∧
F
∈
S
NGHom
T
∧
G
∈
S
NGHom
T
→
F
∈
S
GrpHom
T
22
1
nmoge0
⊢
S
∈
NrmGrp
∧
T
∈
NrmGrp
∧
F
∈
S
GrpHom
T
→
0
≤
N
F
23
8
10
21
22
syl3anc
⊢
T
∈
Abel
∧
F
∈
S
NGHom
T
∧
G
∈
S
NGHom
T
→
0
≤
N
F
24
13
3ad2ant3
⊢
T
∈
Abel
∧
F
∈
S
NGHom
T
∧
G
∈
S
NGHom
T
→
G
∈
S
GrpHom
T
25
1
nmoge0
⊢
S
∈
NrmGrp
∧
T
∈
NrmGrp
∧
G
∈
S
GrpHom
T
→
0
≤
N
G
26
8
10
24
25
syl3anc
⊢
T
∈
Abel
∧
F
∈
S
NGHom
T
∧
G
∈
S
NGHom
T
→
0
≤
N
G
27
17
19
23
26
addge0d
⊢
T
∈
Abel
∧
F
∈
S
NGHom
T
∧
G
∈
S
NGHom
T
→
0
≤
N
F
+
N
G
28
10
adantr
⊢
T
∈
Abel
∧
F
∈
S
NGHom
T
∧
G
∈
S
NGHom
T
∧
x
∈
Base
S
∧
x
≠
0
S
→
T
∈
NrmGrp
29
ngpgrp
⊢
T
∈
NrmGrp
→
T
∈
Grp
30
28
29
syl
⊢
T
∈
Abel
∧
F
∈
S
NGHom
T
∧
G
∈
S
NGHom
T
∧
x
∈
Base
S
∧
x
≠
0
S
→
T
∈
Grp
31
21
adantr
⊢
T
∈
Abel
∧
F
∈
S
NGHom
T
∧
G
∈
S
NGHom
T
∧
x
∈
Base
S
∧
x
≠
0
S
→
F
∈
S
GrpHom
T
32
eqid
⊢
Base
T
=
Base
T
33
3
32
ghmf
⊢
F
∈
S
GrpHom
T
→
F
:
Base
S
⟶
Base
T
34
31
33
syl
⊢
T
∈
Abel
∧
F
∈
S
NGHom
T
∧
G
∈
S
NGHom
T
∧
x
∈
Base
S
∧
x
≠
0
S
→
F
:
Base
S
⟶
Base
T
35
simprl
⊢
T
∈
Abel
∧
F
∈
S
NGHom
T
∧
G
∈
S
NGHom
T
∧
x
∈
Base
S
∧
x
≠
0
S
→
x
∈
Base
S
36
34
35
ffvelcdmd
⊢
T
∈
Abel
∧
F
∈
S
NGHom
T
∧
G
∈
S
NGHom
T
∧
x
∈
Base
S
∧
x
≠
0
S
→
F
x
∈
Base
T
37
24
adantr
⊢
T
∈
Abel
∧
F
∈
S
NGHom
T
∧
G
∈
S
NGHom
T
∧
x
∈
Base
S
∧
x
≠
0
S
→
G
∈
S
GrpHom
T
38
3
32
ghmf
⊢
G
∈
S
GrpHom
T
→
G
:
Base
S
⟶
Base
T
39
37
38
syl
⊢
T
∈
Abel
∧
F
∈
S
NGHom
T
∧
G
∈
S
NGHom
T
∧
x
∈
Base
S
∧
x
≠
0
S
→
G
:
Base
S
⟶
Base
T
40
39
35
ffvelcdmd
⊢
T
∈
Abel
∧
F
∈
S
NGHom
T
∧
G
∈
S
NGHom
T
∧
x
∈
Base
S
∧
x
≠
0
S
→
G
x
∈
Base
T
41
32
2
grpcl
⊢
T
∈
Grp
∧
F
x
∈
Base
T
∧
G
x
∈
Base
T
→
F
x
+
˙
G
x
∈
Base
T
42
30
36
40
41
syl3anc
⊢
T
∈
Abel
∧
F
∈
S
NGHom
T
∧
G
∈
S
NGHom
T
∧
x
∈
Base
S
∧
x
≠
0
S
→
F
x
+
˙
G
x
∈
Base
T
43
32
5
nmcl
⊢
T
∈
NrmGrp
∧
F
x
+
˙
G
x
∈
Base
T
→
norm
T
F
x
+
˙
G
x
∈
ℝ
44
28
42
43
syl2anc
⊢
T
∈
Abel
∧
F
∈
S
NGHom
T
∧
G
∈
S
NGHom
T
∧
x
∈
Base
S
∧
x
≠
0
S
→
norm
T
F
x
+
˙
G
x
∈
ℝ
45
32
5
nmcl
⊢
T
∈
NrmGrp
∧
F
x
∈
Base
T
→
norm
T
F
x
∈
ℝ
46
28
36
45
syl2anc
⊢
T
∈
Abel
∧
F
∈
S
NGHom
T
∧
G
∈
S
NGHom
T
∧
x
∈
Base
S
∧
x
≠
0
S
→
norm
T
F
x
∈
ℝ
47
32
5
nmcl
⊢
T
∈
NrmGrp
∧
G
x
∈
Base
T
→
norm
T
G
x
∈
ℝ
48
28
40
47
syl2anc
⊢
T
∈
Abel
∧
F
∈
S
NGHom
T
∧
G
∈
S
NGHom
T
∧
x
∈
Base
S
∧
x
≠
0
S
→
norm
T
G
x
∈
ℝ
49
46
48
readdcld
⊢
T
∈
Abel
∧
F
∈
S
NGHom
T
∧
G
∈
S
NGHom
T
∧
x
∈
Base
S
∧
x
≠
0
S
→
norm
T
F
x
+
norm
T
G
x
∈
ℝ
50
17
adantr
⊢
T
∈
Abel
∧
F
∈
S
NGHom
T
∧
G
∈
S
NGHom
T
∧
x
∈
Base
S
∧
x
≠
0
S
→
N
F
∈
ℝ
51
simpl
⊢
x
∈
Base
S
∧
x
≠
0
S
→
x
∈
Base
S
52
3
4
nmcl
⊢
S
∈
NrmGrp
∧
x
∈
Base
S
→
norm
S
x
∈
ℝ
53
8
51
52
syl2an
⊢
T
∈
Abel
∧
F
∈
S
NGHom
T
∧
G
∈
S
NGHom
T
∧
x
∈
Base
S
∧
x
≠
0
S
→
norm
S
x
∈
ℝ
54
50
53
remulcld
⊢
T
∈
Abel
∧
F
∈
S
NGHom
T
∧
G
∈
S
NGHom
T
∧
x
∈
Base
S
∧
x
≠
0
S
→
N
F
norm
S
x
∈
ℝ
55
19
adantr
⊢
T
∈
Abel
∧
F
∈
S
NGHom
T
∧
G
∈
S
NGHom
T
∧
x
∈
Base
S
∧
x
≠
0
S
→
N
G
∈
ℝ
56
55
53
remulcld
⊢
T
∈
Abel
∧
F
∈
S
NGHom
T
∧
G
∈
S
NGHom
T
∧
x
∈
Base
S
∧
x
≠
0
S
→
N
G
norm
S
x
∈
ℝ
57
54
56
readdcld
⊢
T
∈
Abel
∧
F
∈
S
NGHom
T
∧
G
∈
S
NGHom
T
∧
x
∈
Base
S
∧
x
≠
0
S
→
N
F
norm
S
x
+
N
G
norm
S
x
∈
ℝ
58
32
5
2
nmtri
⊢
T
∈
NrmGrp
∧
F
x
∈
Base
T
∧
G
x
∈
Base
T
→
norm
T
F
x
+
˙
G
x
≤
norm
T
F
x
+
norm
T
G
x
59
28
36
40
58
syl3anc
⊢
T
∈
Abel
∧
F
∈
S
NGHom
T
∧
G
∈
S
NGHom
T
∧
x
∈
Base
S
∧
x
≠
0
S
→
norm
T
F
x
+
˙
G
x
≤
norm
T
F
x
+
norm
T
G
x
60
simpl2
⊢
T
∈
Abel
∧
F
∈
S
NGHom
T
∧
G
∈
S
NGHom
T
∧
x
∈
Base
S
∧
x
≠
0
S
→
F
∈
S
NGHom
T
61
1
3
4
5
nmoi
⊢
F
∈
S
NGHom
T
∧
x
∈
Base
S
→
norm
T
F
x
≤
N
F
norm
S
x
62
60
35
61
syl2anc
⊢
T
∈
Abel
∧
F
∈
S
NGHom
T
∧
G
∈
S
NGHom
T
∧
x
∈
Base
S
∧
x
≠
0
S
→
norm
T
F
x
≤
N
F
norm
S
x
63
simpl3
⊢
T
∈
Abel
∧
F
∈
S
NGHom
T
∧
G
∈
S
NGHom
T
∧
x
∈
Base
S
∧
x
≠
0
S
→
G
∈
S
NGHom
T
64
1
3
4
5
nmoi
⊢
G
∈
S
NGHom
T
∧
x
∈
Base
S
→
norm
T
G
x
≤
N
G
norm
S
x
65
63
35
64
syl2anc
⊢
T
∈
Abel
∧
F
∈
S
NGHom
T
∧
G
∈
S
NGHom
T
∧
x
∈
Base
S
∧
x
≠
0
S
→
norm
T
G
x
≤
N
G
norm
S
x
66
46
48
54
56
62
65
le2addd
⊢
T
∈
Abel
∧
F
∈
S
NGHom
T
∧
G
∈
S
NGHom
T
∧
x
∈
Base
S
∧
x
≠
0
S
→
norm
T
F
x
+
norm
T
G
x
≤
N
F
norm
S
x
+
N
G
norm
S
x
67
44
49
57
59
66
letrd
⊢
T
∈
Abel
∧
F
∈
S
NGHom
T
∧
G
∈
S
NGHom
T
∧
x
∈
Base
S
∧
x
≠
0
S
→
norm
T
F
x
+
˙
G
x
≤
N
F
norm
S
x
+
N
G
norm
S
x
68
34
ffnd
⊢
T
∈
Abel
∧
F
∈
S
NGHom
T
∧
G
∈
S
NGHom
T
∧
x
∈
Base
S
∧
x
≠
0
S
→
F
Fn
Base
S
69
39
ffnd
⊢
T
∈
Abel
∧
F
∈
S
NGHom
T
∧
G
∈
S
NGHom
T
∧
x
∈
Base
S
∧
x
≠
0
S
→
G
Fn
Base
S
70
fvexd
⊢
T
∈
Abel
∧
F
∈
S
NGHom
T
∧
G
∈
S
NGHom
T
∧
x
∈
Base
S
∧
x
≠
0
S
→
Base
S
∈
V
71
fnfvof
⊢
F
Fn
Base
S
∧
G
Fn
Base
S
∧
Base
S
∈
V
∧
x
∈
Base
S
→
F
+
˙
f
G
x
=
F
x
+
˙
G
x
72
68
69
70
35
71
syl22anc
⊢
T
∈
Abel
∧
F
∈
S
NGHom
T
∧
G
∈
S
NGHom
T
∧
x
∈
Base
S
∧
x
≠
0
S
→
F
+
˙
f
G
x
=
F
x
+
˙
G
x
73
72
fveq2d
⊢
T
∈
Abel
∧
F
∈
S
NGHom
T
∧
G
∈
S
NGHom
T
∧
x
∈
Base
S
∧
x
≠
0
S
→
norm
T
F
+
˙
f
G
x
=
norm
T
F
x
+
˙
G
x
74
50
recnd
⊢
T
∈
Abel
∧
F
∈
S
NGHom
T
∧
G
∈
S
NGHom
T
∧
x
∈
Base
S
∧
x
≠
0
S
→
N
F
∈
ℂ
75
55
recnd
⊢
T
∈
Abel
∧
F
∈
S
NGHom
T
∧
G
∈
S
NGHom
T
∧
x
∈
Base
S
∧
x
≠
0
S
→
N
G
∈
ℂ
76
53
recnd
⊢
T
∈
Abel
∧
F
∈
S
NGHom
T
∧
G
∈
S
NGHom
T
∧
x
∈
Base
S
∧
x
≠
0
S
→
norm
S
x
∈
ℂ
77
74
75
76
adddird
⊢
T
∈
Abel
∧
F
∈
S
NGHom
T
∧
G
∈
S
NGHom
T
∧
x
∈
Base
S
∧
x
≠
0
S
→
N
F
+
N
G
norm
S
x
=
N
F
norm
S
x
+
N
G
norm
S
x
78
67
73
77
3brtr4d
⊢
T
∈
Abel
∧
F
∈
S
NGHom
T
∧
G
∈
S
NGHom
T
∧
x
∈
Base
S
∧
x
≠
0
S
→
norm
T
F
+
˙
f
G
x
≤
N
F
+
N
G
norm
S
x
79
1
3
4
5
6
8
10
15
20
27
78
nmolb2d
⊢
T
∈
Abel
∧
F
∈
S
NGHom
T
∧
G
∈
S
NGHom
T
→
N
F
+
˙
f
G
≤
N
F
+
N
G