Metamath Proof Explorer


Theorem nmotri

Description: Triangle inequality for the operator norm. (Contributed by Mario Carneiro, 20-Oct-2015)

Ref Expression
Hypotheses nmotri.1 N=SnormOpT
nmotri.p +˙=+T
Assertion nmotri TAbelFSNGHomTGSNGHomTNF+˙fGNF+NG

Proof

Step Hyp Ref Expression
1 nmotri.1 N=SnormOpT
2 nmotri.p +˙=+T
3 eqid BaseS=BaseS
4 eqid normS=normS
5 eqid normT=normT
6 eqid 0S=0S
7 nghmrcl1 FSNGHomTSNrmGrp
8 7 3ad2ant2 TAbelFSNGHomTGSNGHomTSNrmGrp
9 nghmrcl2 FSNGHomTTNrmGrp
10 9 3ad2ant2 TAbelFSNGHomTGSNGHomTTNrmGrp
11 id TAbelTAbel
12 nghmghm FSNGHomTFSGrpHomT
13 nghmghm GSNGHomTGSGrpHomT
14 2 ghmplusg TAbelFSGrpHomTGSGrpHomTF+˙fGSGrpHomT
15 11 12 13 14 syl3an TAbelFSNGHomTGSNGHomTF+˙fGSGrpHomT
16 1 nghmcl FSNGHomTNF
17 16 3ad2ant2 TAbelFSNGHomTGSNGHomTNF
18 1 nghmcl GSNGHomTNG
19 18 3ad2ant3 TAbelFSNGHomTGSNGHomTNG
20 17 19 readdcld TAbelFSNGHomTGSNGHomTNF+NG
21 12 3ad2ant2 TAbelFSNGHomTGSNGHomTFSGrpHomT
22 1 nmoge0 SNrmGrpTNrmGrpFSGrpHomT0NF
23 8 10 21 22 syl3anc TAbelFSNGHomTGSNGHomT0NF
24 13 3ad2ant3 TAbelFSNGHomTGSNGHomTGSGrpHomT
25 1 nmoge0 SNrmGrpTNrmGrpGSGrpHomT0NG
26 8 10 24 25 syl3anc TAbelFSNGHomTGSNGHomT0NG
27 17 19 23 26 addge0d TAbelFSNGHomTGSNGHomT0NF+NG
28 10 adantr TAbelFSNGHomTGSNGHomTxBaseSx0STNrmGrp
29 ngpgrp TNrmGrpTGrp
30 28 29 syl TAbelFSNGHomTGSNGHomTxBaseSx0STGrp
31 21 adantr TAbelFSNGHomTGSNGHomTxBaseSx0SFSGrpHomT
32 eqid BaseT=BaseT
33 3 32 ghmf FSGrpHomTF:BaseSBaseT
34 31 33 syl TAbelFSNGHomTGSNGHomTxBaseSx0SF:BaseSBaseT
35 simprl TAbelFSNGHomTGSNGHomTxBaseSx0SxBaseS
36 34 35 ffvelcdmd TAbelFSNGHomTGSNGHomTxBaseSx0SFxBaseT
37 24 adantr TAbelFSNGHomTGSNGHomTxBaseSx0SGSGrpHomT
38 3 32 ghmf GSGrpHomTG:BaseSBaseT
39 37 38 syl TAbelFSNGHomTGSNGHomTxBaseSx0SG:BaseSBaseT
40 39 35 ffvelcdmd TAbelFSNGHomTGSNGHomTxBaseSx0SGxBaseT
41 32 2 grpcl TGrpFxBaseTGxBaseTFx+˙GxBaseT
42 30 36 40 41 syl3anc TAbelFSNGHomTGSNGHomTxBaseSx0SFx+˙GxBaseT
43 32 5 nmcl TNrmGrpFx+˙GxBaseTnormTFx+˙Gx
44 28 42 43 syl2anc TAbelFSNGHomTGSNGHomTxBaseSx0SnormTFx+˙Gx
45 32 5 nmcl TNrmGrpFxBaseTnormTFx
46 28 36 45 syl2anc TAbelFSNGHomTGSNGHomTxBaseSx0SnormTFx
47 32 5 nmcl TNrmGrpGxBaseTnormTGx
48 28 40 47 syl2anc TAbelFSNGHomTGSNGHomTxBaseSx0SnormTGx
49 46 48 readdcld TAbelFSNGHomTGSNGHomTxBaseSx0SnormTFx+normTGx
50 17 adantr TAbelFSNGHomTGSNGHomTxBaseSx0SNF
51 simpl xBaseSx0SxBaseS
52 3 4 nmcl SNrmGrpxBaseSnormSx
53 8 51 52 syl2an TAbelFSNGHomTGSNGHomTxBaseSx0SnormSx
54 50 53 remulcld TAbelFSNGHomTGSNGHomTxBaseSx0SNFnormSx
55 19 adantr TAbelFSNGHomTGSNGHomTxBaseSx0SNG
56 55 53 remulcld TAbelFSNGHomTGSNGHomTxBaseSx0SNGnormSx
57 54 56 readdcld TAbelFSNGHomTGSNGHomTxBaseSx0SNFnormSx+NGnormSx
58 32 5 2 nmtri TNrmGrpFxBaseTGxBaseTnormTFx+˙GxnormTFx+normTGx
59 28 36 40 58 syl3anc TAbelFSNGHomTGSNGHomTxBaseSx0SnormTFx+˙GxnormTFx+normTGx
60 simpl2 TAbelFSNGHomTGSNGHomTxBaseSx0SFSNGHomT
61 1 3 4 5 nmoi FSNGHomTxBaseSnormTFxNFnormSx
62 60 35 61 syl2anc TAbelFSNGHomTGSNGHomTxBaseSx0SnormTFxNFnormSx
63 simpl3 TAbelFSNGHomTGSNGHomTxBaseSx0SGSNGHomT
64 1 3 4 5 nmoi GSNGHomTxBaseSnormTGxNGnormSx
65 63 35 64 syl2anc TAbelFSNGHomTGSNGHomTxBaseSx0SnormTGxNGnormSx
66 46 48 54 56 62 65 le2addd TAbelFSNGHomTGSNGHomTxBaseSx0SnormTFx+normTGxNFnormSx+NGnormSx
67 44 49 57 59 66 letrd TAbelFSNGHomTGSNGHomTxBaseSx0SnormTFx+˙GxNFnormSx+NGnormSx
68 34 ffnd TAbelFSNGHomTGSNGHomTxBaseSx0SFFnBaseS
69 39 ffnd TAbelFSNGHomTGSNGHomTxBaseSx0SGFnBaseS
70 fvexd TAbelFSNGHomTGSNGHomTxBaseSx0SBaseSV
71 fnfvof FFnBaseSGFnBaseSBaseSVxBaseSF+˙fGx=Fx+˙Gx
72 68 69 70 35 71 syl22anc TAbelFSNGHomTGSNGHomTxBaseSx0SF+˙fGx=Fx+˙Gx
73 72 fveq2d TAbelFSNGHomTGSNGHomTxBaseSx0SnormTF+˙fGx=normTFx+˙Gx
74 50 recnd TAbelFSNGHomTGSNGHomTxBaseSx0SNF
75 55 recnd TAbelFSNGHomTGSNGHomTxBaseSx0SNG
76 53 recnd TAbelFSNGHomTGSNGHomTxBaseSx0SnormSx
77 74 75 76 adddird TAbelFSNGHomTGSNGHomTxBaseSx0SNF+NGnormSx=NFnormSx+NGnormSx
78 67 73 77 3brtr4d TAbelFSNGHomTGSNGHomTxBaseSx0SnormTF+˙fGxNF+NGnormSx
79 1 3 4 5 6 8 10 15 20 27 78 nmolb2d TAbelFSNGHomTGSNGHomTNF+˙fGNF+NG