| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq2 |
|
| 2 |
|
mpteq1 |
|
| 3 |
|
mpt0 |
|
| 4 |
2 3
|
eqtrdi |
|
| 5 |
4
|
rneqd |
|
| 6 |
|
rn0 |
|
| 7 |
5 6
|
eqtrdi |
|
| 8 |
7
|
uneq2d |
|
| 9 |
1 8
|
eqeq12d |
|
| 10 |
|
oveq2 |
|
| 11 |
|
mpteq1 |
|
| 12 |
11
|
rneqd |
|
| 13 |
12
|
uneq2d |
|
| 14 |
10 13
|
eqeq12d |
|
| 15 |
|
oveq2 |
|
| 16 |
|
mpteq1 |
|
| 17 |
16
|
rneqd |
|
| 18 |
17
|
uneq2d |
|
| 19 |
15 18
|
eqeq12d |
|
| 20 |
|
oveq2 |
|
| 21 |
|
mpteq1 |
|
| 22 |
21
|
rneqd |
|
| 23 |
22
|
uneq2d |
|
| 24 |
20 23
|
eqeq12d |
|
| 25 |
|
oa0 |
|
| 26 |
|
un0 |
|
| 27 |
25 26
|
eqtr4di |
|
| 28 |
|
uneq1 |
|
| 29 |
|
unass |
|
| 30 |
|
rexun |
|
| 31 |
|
df-suc |
|
| 32 |
31
|
rexeqi |
|
| 33 |
|
eqid |
|
| 34 |
33
|
elrnmpt |
|
| 35 |
34
|
elv |
|
| 36 |
|
velsn |
|
| 37 |
|
vex |
|
| 38 |
|
oveq2 |
|
| 39 |
38
|
eqeq2d |
|
| 40 |
37 39
|
rexsn |
|
| 41 |
36 40
|
bitr4i |
|
| 42 |
35 41
|
orbi12i |
|
| 43 |
30 32 42
|
3bitr4i |
|
| 44 |
|
eqid |
|
| 45 |
|
ovex |
|
| 46 |
44 45
|
elrnmpti |
|
| 47 |
|
elun |
|
| 48 |
43 46 47
|
3bitr4i |
|
| 49 |
48
|
eqriv |
|
| 50 |
49
|
uneq2i |
|
| 51 |
29 50
|
eqtr4i |
|
| 52 |
28 51
|
eqtrdi |
|
| 53 |
|
oasuc |
|
| 54 |
|
df-suc |
|
| 55 |
53 54
|
eqtrdi |
|
| 56 |
55
|
eqeq1d |
|
| 57 |
52 56
|
imbitrrid |
|
| 58 |
57
|
expcom |
|
| 59 |
|
vex |
|
| 60 |
|
oalim |
|
| 61 |
59 60
|
mpanr1 |
|
| 62 |
61
|
ancoms |
|
| 63 |
62
|
adantr |
|
| 64 |
|
iuneq2 |
|
| 65 |
64
|
adantl |
|
| 66 |
|
iunun |
|
| 67 |
|
0ellim |
|
| 68 |
|
ne0i |
|
| 69 |
|
iunconst |
|
| 70 |
67 68 69
|
3syl |
|
| 71 |
|
df-rex |
|
| 72 |
35 71
|
bitri |
|
| 73 |
72
|
rexbii |
|
| 74 |
|
eluni2 |
|
| 75 |
74
|
anbi1i |
|
| 76 |
|
r19.41v |
|
| 77 |
75 76
|
bitr4i |
|
| 78 |
77
|
exbii |
|
| 79 |
|
df-rex |
|
| 80 |
|
rexcom4 |
|
| 81 |
78 79 80
|
3bitr4i |
|
| 82 |
73 81
|
bitr4i |
|
| 83 |
|
limuni |
|
| 84 |
83
|
rexeqdv |
|
| 85 |
82 84
|
bitr4id |
|
| 86 |
|
eliun |
|
| 87 |
|
eqid |
|
| 88 |
87 45
|
elrnmpti |
|
| 89 |
85 86 88
|
3bitr4g |
|
| 90 |
89
|
eqrdv |
|
| 91 |
70 90
|
uneq12d |
|
| 92 |
66 91
|
eqtrid |
|
| 93 |
92
|
ad2antrr |
|
| 94 |
63 65 93
|
3eqtrd |
|
| 95 |
94
|
exp31 |
|
| 96 |
9 14 19 24 27 58 95
|
tfinds3 |
|
| 97 |
96
|
impcom |
|