Description: An element with nonzero order has as many multiples as its order. (Contributed by Stefan O'Rear, 6-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | odf1o1.x | |
|
odf1o1.t | |
||
odf1o1.o | |
||
odf1o1.k | |
||
Assertion | odf1o2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | odf1o1.x | |
|
2 | odf1o1.t | |
|
3 | odf1o1.o | |
|
4 | odf1o1.k | |
|
5 | simpl1 | |
|
6 | elfzoelz | |
|
7 | 6 | adantl | |
8 | simpl2 | |
|
9 | 1 2 | mulgcl | |
10 | 5 7 8 9 | syl3anc | |
11 | 10 | ex | |
12 | simpl3 | |
|
13 | 12 | nncnd | |
14 | 13 | subid1d | |
15 | 14 | breq1d | |
16 | fzocongeq | |
|
17 | 16 | adantl | |
18 | simpl1 | |
|
19 | simpl2 | |
|
20 | 6 | ad2antrl | |
21 | elfzoelz | |
|
22 | 21 | ad2antll | |
23 | eqid | |
|
24 | 1 3 2 23 | odcong | |
25 | 18 19 20 22 24 | syl112anc | |
26 | 15 17 25 | 3bitr3rd | |
27 | 26 | ex | |
28 | 11 27 | dom2lem | |
29 | f1fn | |
|
30 | 28 29 | syl | |
31 | resss | |
|
32 | 6 | ssriv | |
33 | resmpt | |
|
34 | 32 33 | ax-mp | |
35 | oveq1 | |
|
36 | 35 | cbvmptv | |
37 | 31 34 36 | 3sstr3i | |
38 | rnss | |
|
39 | 37 38 | mp1i | |
40 | simpr | |
|
41 | simpl3 | |
|
42 | zmodfzo | |
|
43 | 40 41 42 | syl2anc | |
44 | 1 3 2 23 | odmod | |
45 | 44 | 3an1rs | |
46 | 45 | eqcomd | |
47 | oveq1 | |
|
48 | 47 | rspceeqv | |
49 | 43 46 48 | syl2anc | |
50 | ovex | |
|
51 | eqid | |
|
52 | 51 | elrnmpt | |
53 | 50 52 | ax-mp | |
54 | 49 53 | sylibr | |
55 | 54 | fmpttd | |
56 | 55 | frnd | |
57 | 39 56 | eqssd | |
58 | eqid | |
|
59 | 1 2 58 4 | cycsubg2 | |
60 | 59 | 3adant3 | |
61 | 57 60 | eqtr4d | |
62 | df-fo | |
|
63 | 30 61 62 | sylanbrc | |
64 | df-f1 | |
|
65 | 64 | simprbi | |
66 | 28 65 | syl | |
67 | dff1o3 | |
|
68 | 63 66 67 | sylanbrc | |