Metamath Proof Explorer


Theorem odz2prm2pw

Description: Any power of two is coprime to any prime not being two. (Contributed by AV, 25-Jul-2021)

Ref Expression
Assertion odz2prm2pw NP222NmodP122N+1modP=1odP2=2N+1

Proof

Step Hyp Ref Expression
1 eldifi P2P
2 2nn 2
3 2 a1i N2
4 2nn0 20
5 4 a1i N20
6 peano2nn NN+1
7 6 nnnn0d NN+10
8 5 7 nn0expcld N2N+10
9 3 8 nnexpcld N22N+1
10 9 nnzd N22N+1
11 modprm1div P22N+122N+1modP=1P22N+11
12 1 10 11 syl2anr NP222N+1modP=1P22N+11
13 prmnn PP
14 1 13 syl P2P
15 14 adantl NP2P
16 2z 2
17 16 a1i NP22
18 eldifsn P2PP2
19 simpr PP2P2
20 19 necomd PP22P
21 18 20 sylbi P22P
22 2prm 2
23 prmrp 2P2gcdP=12P
24 22 1 23 sylancr P22gcdP=12P
25 21 24 mpbird P22gcdP=1
26 25 adantl NP22gcdP=1
27 15 17 26 3jca NP2P22gcdP=1
28 8 adantr NP22N+10
29 odzdvds P22gcdP=12N+10P22N+11odP22N+1
30 27 28 29 syl2anc NP2P22N+11odP22N+1
31 12 30 bitrd NP222N+1modP=1odP22N+1
32 nnnn0 NN0
33 5 32 nn0expcld N2N0
34 3 33 nnexpcld N22N
35 34 nnzd N22N
36 modprm1div P22N22NmodP=1P22N1
37 1 35 36 syl2anr NP222NmodP=1P22N1
38 33 adantr NP22N0
39 odzdvds P22gcdP=12N0P22N1odP22N
40 27 38 39 syl2anc NP2P22N1odP22N
41 37 40 bitrd NP222NmodP=1odP22N
42 41 necon3abid NP222NmodP1¬odP22N
43 odzcl P22gcdP=1odP2
44 27 43 syl NP2odP2
45 7 adantr NP2N+10
46 dvdsprmpweqle 2odP2N+10odP22N+1n0nN+1odP2=2n
47 22 44 45 46 mp3an2i NP2odP22N+1n0nN+1odP2=2n
48 breq1 odP2=2nodP22N2n2N
49 48 adantl NP2n0nN+1odP2=2nodP22N2n2N
50 49 notbid NP2n0nN+1odP2=2n¬odP22N¬2n2N
51 simpr NP2n0nN+1odP2=2nodP2=2n
52 51 adantr NP2n0nN+1odP2=2n¬2n2NodP2=2n
53 nn0re n0n
54 6 nnred NN+1
55 54 adantr NP2N+1
56 leloe nN+1nN+1n<N+1n=N+1
57 53 55 56 syl2anr NP2n0nN+1n<N+1n=N+1
58 simpr NP2n0n0
59 nn0z n0n
60 59 adantl NP2n0n
61 60 adantr NP2n0n<N+1n
62 nnz NN
63 62 adantr NP2N
64 63 adantr NP2n0N
65 64 adantr NP2n0n<N+1N
66 zleltp1 nNnNn<N+1
67 59 63 66 syl2anr NP2n0nNn<N+1
68 67 biimpar NP2n0n<N+1nN
69 eluz2 NnnNnN
70 61 65 68 69 syl3anbrc NP2n0n<N+1Nn
71 dvdsexp 2n0Nn2n2N
72 16 58 70 71 mp3an2ani NP2n0n<N+12n2N
73 72 pm2.24d NP2n0n<N+1¬2n2N2n=2N+1
74 73 expcom n<N+1NP2n0¬2n2N2n=2N+1
75 oveq2 n=N+12n=2N+1
76 75 2a1d n=N+1NP2n0¬2n2N2n=2N+1
77 74 76 jaoi n<N+1n=N+1NP2n0¬2n2N2n=2N+1
78 77 com12 NP2n0n<N+1n=N+1¬2n2N2n=2N+1
79 57 78 sylbid NP2n0nN+1¬2n2N2n=2N+1
80 79 imp NP2n0nN+1¬2n2N2n=2N+1
81 80 adantr NP2n0nN+1odP2=2n¬2n2N2n=2N+1
82 81 imp NP2n0nN+1odP2=2n¬2n2N2n=2N+1
83 52 82 eqtrd NP2n0nN+1odP2=2n¬2n2NodP2=2N+1
84 83 ex NP2n0nN+1odP2=2n¬2n2NodP2=2N+1
85 50 84 sylbid NP2n0nN+1odP2=2n¬odP22NodP2=2N+1
86 85 expl NP2n0nN+1odP2=2n¬odP22NodP2=2N+1
87 86 rexlimdva NP2n0nN+1odP2=2n¬odP22NodP2=2N+1
88 47 87 syld NP2odP22N+1¬odP22NodP2=2N+1
89 88 com23 NP2¬odP22NodP22N+1odP2=2N+1
90 42 89 sylbid NP222NmodP1odP22N+1odP2=2N+1
91 90 com23 NP2odP22N+122NmodP1odP2=2N+1
92 31 91 sylbid NP222N+1modP=122NmodP1odP2=2N+1
93 92 com23 NP222NmodP122N+1modP=1odP2=2N+1
94 93 imp32 NP222NmodP122N+1modP=1odP2=2N+1