Metamath Proof Explorer


Theorem opsrtoslem2

Description: Lemma for opsrtos . (Contributed by Mario Carneiro, 8-Feb-2015)

Ref Expression
Hypotheses opsrso.o O=IordPwSerRT
opsrso.i φIV
opsrso.r φRToset
opsrso.t φTI×I
opsrso.w φTWeI
opsrtoslem.s S=ImPwSerR
opsrtoslem.b B=BaseS
opsrtoslem.q <˙=<R
opsrtoslem.c C=T<bagI
opsrtoslem.d D=h0I|h-1Fin
opsrtoslem.ps ψzDxz<˙yzwDwCzxw=yw
opsrtoslem.l ˙=O
Assertion opsrtoslem2 φOToset

Proof

Step Hyp Ref Expression
1 opsrso.o O=IordPwSerRT
2 opsrso.i φIV
3 opsrso.r φRToset
4 opsrso.t φTI×I
5 opsrso.w φTWeI
6 opsrtoslem.s S=ImPwSerR
7 opsrtoslem.b B=BaseS
8 opsrtoslem.q <˙=<R
9 opsrtoslem.c C=T<bagI
10 opsrtoslem.d D=h0I|h-1Fin
11 opsrtoslem.ps ψzDxz<˙yzwDwCzxw=yw
12 opsrtoslem.l ˙=O
13 2 2 xpexd φI×IV
14 13 4 ssexd φTV
15 9 10 2 14 5 ltbwe φCWeD
16 eqid BaseR=BaseR
17 eqid R=R
18 16 17 8 tosso RTosetRToset<˙OrBaseRIBaseRR
19 18 ibi RToset<˙OrBaseRIBaseRR
20 3 19 syl φ<˙OrBaseRIBaseRR
21 20 simpld φ<˙OrBaseR
22 11 opabbii xy|ψ=xy|zDxz<˙yzwDwCzxw=yw
23 22 wemapso CWeD<˙OrBaseRxy|ψOrBaseRD
24 15 21 23 syl2anc φxy|ψOrBaseRD
25 6 16 10 7 2 psrbas φB=BaseRD
26 soeq2 B=BaseRDxy|ψOrBxy|ψOrBaseRD
27 25 26 syl φxy|ψOrBxy|ψOrBaseRD
28 24 27 mpbird φxy|ψOrB
29 soinxp xy|ψOrBxy|ψB×BOrB
30 28 29 sylib φxy|ψB×BOrB
31 1 fvexi OV
32 eqid <O=<O
33 12 32 pltfval OV<O=˙I
34 31 33 ax-mp <O=˙I
35 difundir xy|ψB×BIBI=xy|ψB×BIIBI
36 resss IBI
37 ssdif0 IBIIBI=
38 36 37 mpbi IBI=
39 38 uneq2i xy|ψB×BIIBI=xy|ψB×BI
40 un0 xy|ψB×BI=xy|ψB×BI
41 35 39 40 3eqtri xy|ψB×BIBI=xy|ψB×BI
42 1 2 3 4 5 6 7 8 9 10 11 12 opsrtoslem1 φ˙=xy|ψB×BIB
43 42 difeq1d φ˙I=xy|ψB×BIBI
44 relinxp Relxy|ψB×B
45 44 a1i φRelxy|ψB×B
46 df-br aIbabI
47 vex bV
48 47 ideq aIba=b
49 46 48 bitr3i abIa=b
50 brin axy|ψB×Baaxy|ψaaB×Ba
51 50 simprbi axy|ψB×BaaB×Ba
52 brxp aB×BaaBaB
53 52 simprbi aB×BaaB
54 51 53 syl axy|ψB×BaaB
55 sonr xy|ψB×BOrBaB¬axy|ψB×Ba
56 55 ex xy|ψB×BOrBaB¬axy|ψB×Ba
57 30 54 56 syl2im φaxy|ψB×Ba¬axy|ψB×Ba
58 57 pm2.01d φ¬axy|ψB×Ba
59 breq2 a=baxy|ψB×Baaxy|ψB×Bb
60 df-br axy|ψB×Bbabxy|ψB×B
61 59 60 bitrdi a=baxy|ψB×Baabxy|ψB×B
62 61 notbid a=b¬axy|ψB×Ba¬abxy|ψB×B
63 58 62 syl5ibcom φa=b¬abxy|ψB×B
64 49 63 biimtrid φabI¬abxy|ψB×B
65 64 con2d φabxy|ψB×B¬abI
66 opex abV
67 eldif abVIabV¬abI
68 66 67 mpbiran abVI¬abI
69 65 68 syl6ibr φabxy|ψB×BabVI
70 45 69 relssdv φxy|ψB×BVI
71 disj2 xy|ψB×BI=xy|ψB×BVI
72 70 71 sylibr φxy|ψB×BI=
73 disj3 xy|ψB×BI=xy|ψB×B=xy|ψB×BI
74 72 73 sylib φxy|ψB×B=xy|ψB×BI
75 41 43 74 3eqtr4a φ˙I=xy|ψB×B
76 34 75 eqtrid φ<O=xy|ψB×B
77 soeq1 <O=xy|ψB×B<OOrBxy|ψB×BOrB
78 76 77 syl φ<OOrBxy|ψB×BOrB
79 30 78 mpbird φ<OOrB
80 6 1 4 opsrbas φBaseS=BaseO
81 7 80 eqtrid φB=BaseO
82 soeq2 B=BaseO<OOrB<OOrBaseO
83 81 82 syl φ<OOrB<OOrBaseO
84 79 83 mpbid φ<OOrBaseO
85 81 reseq2d φIB=IBaseO
86 ssun2 IBxy|ψB×BIB
87 85 86 eqsstrrdi φIBaseOxy|ψB×BIB
88 87 42 sseqtrrd φIBaseO˙
89 eqid BaseO=BaseO
90 89 12 32 tosso OVOToset<OOrBaseOIBaseO˙
91 31 90 ax-mp OToset<OOrBaseOIBaseO˙
92 84 88 91 sylanbrc φOToset