Metamath Proof Explorer


Theorem paireqne

Description: Two sets are not equal iff there is exactly one proper pair whose elements are either one of these sets. (Contributed by AV, 27-Jan-2023)

Ref Expression
Hypotheses paireqne.a φAV
paireqne.b φBV
paireqne.p P=x𝒫V|x=2
Assertion paireqne φ∃!pPxpx=Ax=BAB

Proof

Step Hyp Ref Expression
1 paireqne.a φAV
2 paireqne.b φBV
3 paireqne.p P=x𝒫V|x=2
4 raleq p=qxpx=Ax=Bxqx=Ax=B
5 4 reu8 ∃!pPxpx=Ax=BpPxpx=Ax=BqPxqx=Ax=Bp=q
6 3 eleq2i pPpx𝒫V|x=2
7 elss2prb px𝒫V|x=2aVbVabp=ab
8 6 7 bitri pPaVbVabp=ab
9 raleq p=abxpx=Ax=Bxabx=Ax=B
10 vex aV
11 vex bV
12 eqeq1 x=ax=Aa=A
13 eqeq1 x=ax=Ba=B
14 12 13 orbi12d x=ax=Ax=Ba=Aa=B
15 eqeq1 x=bx=Ab=A
16 eqeq1 x=bx=Bb=B
17 15 16 orbi12d x=bx=Ax=Bb=Ab=B
18 10 11 14 17 ralpr xabx=Ax=Ba=Aa=Bb=Ab=B
19 9 18 bitrdi p=abxpx=Ax=Ba=Aa=Bb=Ab=B
20 eqeq1 p=abp=qab=q
21 20 imbi2d p=abxqx=Ax=Bp=qxqx=Ax=Bab=q
22 21 ralbidv p=abqPxqx=Ax=Bp=qqPxqx=Ax=Bab=q
23 19 22 anbi12d p=abxpx=Ax=BqPxqx=Ax=Bp=qa=Aa=Bb=Ab=BqPxqx=Ax=Bab=q
24 23 ad2antll φaVbVabp=abxpx=Ax=BqPxqx=Ax=Bp=qa=Aa=Bb=Ab=BqPxqx=Ax=Bab=q
25 1 2 jca φAVBV
26 prelpwi AVBVAB𝒫V
27 25 26 syl φAB𝒫V
28 27 ad3antrrr φaVbVabp=aba=Aa=Bb=Ab=BAB𝒫V
29 hashprg aVbVabab=2
30 29 adantl φaVbVabab=2
31 30 biimpd φaVbVabab=2
32 31 com12 abφaVbVab=2
33 32 adantr abp=abφaVbVab=2
34 33 impcom φaVbVabp=abab=2
35 34 adantr φaVbVabp=aba=Aa=Bb=Ab=Bab=2
36 eqtr3 b=Aa=Ab=a
37 eqneqall a=babp=abAB=ab
38 37 impd a=babp=abAB=ab
39 38 a1d a=bφaVbVabp=abAB=ab
40 39 impd a=bφaVbVabp=abAB=ab
41 40 equcoms b=aφaVbVabp=abAB=ab
42 36 41 syl b=Aa=AφaVbVabp=abAB=ab
43 42 ex b=Aa=AφaVbVabp=abAB=ab
44 preq12 a=Ab=Bab=AB
45 44 eqcomd a=Ab=BAB=ab
46 45 a1d a=Ab=BφaVbVabp=abAB=ab
47 46 expcom b=Ba=AφaVbVabp=abAB=ab
48 43 47 jaoi b=Ab=Ba=AφaVbVabp=abAB=ab
49 48 com12 a=Ab=Ab=BφaVbVabp=abAB=ab
50 prcom ab=ba
51 preq12 b=Aa=Bba=AB
52 50 51 eqtrid b=Aa=Bab=AB
53 52 eqcomd b=Aa=BAB=ab
54 53 a1d b=Aa=BφaVbVabp=abAB=ab
55 54 ex b=Aa=BφaVbVabp=abAB=ab
56 eqtr3 b=Ba=Bb=a
57 56 41 syl b=Ba=BφaVbVabp=abAB=ab
58 57 ex b=Ba=BφaVbVabp=abAB=ab
59 55 58 jaoi b=Ab=Ba=BφaVbVabp=abAB=ab
60 59 com12 a=Bb=Ab=BφaVbVabp=abAB=ab
61 49 60 jaoi a=Aa=Bb=Ab=BφaVbVabp=abAB=ab
62 61 imp a=Aa=Bb=Ab=BφaVbVabp=abAB=ab
63 62 impcom φaVbVabp=aba=Aa=Bb=Ab=BAB=ab
64 63 fveqeq2d φaVbVabp=aba=Aa=Bb=Ab=BAB=2ab=2
65 35 64 mpbird φaVbVabp=aba=Aa=Bb=Ab=BAB=2
66 28 65 jca φaVbVabp=aba=Aa=Bb=Ab=BAB𝒫VAB=2
67 3 eleq2i ABPABx𝒫V|x=2
68 fveqeq2 x=ABx=2AB=2
69 68 elrab ABx𝒫V|x=2AB𝒫VAB=2
70 67 69 bitri ABPAB𝒫VAB=2
71 66 70 sylibr φaVbVabp=aba=Aa=Bb=Ab=BABP
72 raleq q=ABxqx=Ax=BxABx=Ax=B
73 eqeq2 q=ABab=qab=AB
74 72 73 imbi12d q=ABxqx=Ax=Bab=qxABx=Ax=Bab=AB
75 74 rspcv ABPqPxqx=Ax=Bab=qxABx=Ax=Bab=AB
76 71 75 syl φaVbVabp=aba=Aa=Bb=Ab=BqPxqx=Ax=Bab=qxABx=Ax=Bab=AB
77 eqeq1 x=Ax=AA=A
78 eqeq1 x=Ax=BA=B
79 77 78 orbi12d x=Ax=Ax=BA=AA=B
80 eqeq1 x=Bx=AB=A
81 eqeq1 x=Bx=BB=B
82 80 81 orbi12d x=Bx=Ax=BB=AB=B
83 79 82 ralprg AVBVxABx=Ax=BA=AA=BB=AB=B
84 25 83 syl φxABx=Ax=BA=AA=BB=AB=B
85 84 imbi1d φxABx=Ax=Bab=ABA=AA=BB=AB=Bab=AB
86 85 ad3antrrr φaVbVabp=aba=Aa=Bb=Ab=BxABx=Ax=Bab=ABA=AA=BB=AB=Bab=AB
87 eqid A=A
88 87 orci A=AA=B
89 eqid B=B
90 89 olci B=AB=B
91 pm5.5 A=AA=BB=AB=BA=AA=BB=AB=Bab=ABab=AB
92 88 90 91 mp2an A=AA=BB=AB=Bab=ABab=AB
93 10 11 pm3.2i aVbV
94 preq12bg aVbVAVBVab=ABa=Ab=Ba=Bb=A
95 93 25 94 sylancr φab=ABa=Ab=Ba=Bb=A
96 95 adantr φaVbVab=ABa=Ab=Ba=Bb=A
97 96 adantr φaVbVabp=abab=ABa=Ab=Ba=Bb=A
98 eqeq12 a=Ab=Ba=bA=B
99 98 necon3bid a=Ab=BabAB
100 99 biimpd a=Ab=BabAB
101 eqeq12 a=Bb=Aa=bB=A
102 101 necon3bid a=Bb=AabBA
103 102 biimpd a=Bb=AabBA
104 necom ABBA
105 103 104 syl6ibr a=Bb=AabAB
106 100 105 jaoi a=Ab=Ba=Bb=AabAB
107 106 com12 aba=Ab=Ba=Bb=AAB
108 107 ad2antrl φaVbVabp=aba=Ab=Ba=Bb=AAB
109 97 108 sylbid φaVbVabp=abab=ABAB
110 109 adantr φaVbVabp=aba=Aa=Bb=Ab=Bab=ABAB
111 92 110 biimtrid φaVbVabp=aba=Aa=Bb=Ab=BA=AA=BB=AB=Bab=ABAB
112 86 111 sylbid φaVbVabp=aba=Aa=Bb=Ab=BxABx=Ax=Bab=ABAB
113 76 112 syld φaVbVabp=aba=Aa=Bb=Ab=BqPxqx=Ax=Bab=qAB
114 113 ex φaVbVabp=aba=Aa=Bb=Ab=BqPxqx=Ax=Bab=qAB
115 114 impd φaVbVabp=aba=Aa=Bb=Ab=BqPxqx=Ax=Bab=qAB
116 24 115 sylbid φaVbVabp=abxpx=Ax=BqPxqx=Ax=Bp=qAB
117 116 ex φaVbVabp=abxpx=Ax=BqPxqx=Ax=Bp=qAB
118 117 rexlimdvva φaVbVabp=abxpx=Ax=BqPxqx=Ax=Bp=qAB
119 8 118 biimtrid φpPxpx=Ax=BqPxqx=Ax=Bp=qAB
120 119 imp φpPxpx=Ax=BqPxqx=Ax=Bp=qAB
121 120 rexlimdva φpPxpx=Ax=BqPxqx=Ax=Bp=qAB
122 5 121 biimtrid φ∃!pPxpx=Ax=BAB
123 27 adantr φABAB𝒫V
124 hashprg AVBVABAB=2
125 25 124 syl φABAB=2
126 125 biimpd φABAB=2
127 126 imp φABAB=2
128 123 127 jca φABAB𝒫VAB=2
129 128 70 sylibr φABABP
130 raleq p=ABxpx=Ax=BxABx=Ax=B
131 eqeq1 p=ABp=yAB=y
132 131 imbi2d p=ABxyx=Ax=Bp=yxyx=Ax=BAB=y
133 132 ralbidv p=AByPxyx=Ax=Bp=yyPxyx=Ax=BAB=y
134 130 133 anbi12d p=ABxpx=Ax=ByPxyx=Ax=Bp=yxABx=Ax=ByPxyx=Ax=BAB=y
135 134 adantl φABp=ABxpx=Ax=ByPxyx=Ax=Bp=yxABx=Ax=ByPxyx=Ax=BAB=y
136 vex xV
137 136 elpr xABx=Ax=B
138 137 a1i φABxABx=Ax=B
139 138 biimpd φABxABx=Ax=B
140 139 imp φABxABx=Ax=B
141 140 ralrimiva φABxABx=Ax=B
142 3 eleq2i yPyx𝒫V|x=2
143 elss2prb yx𝒫V|x=2aVbVaby=ab
144 142 143 bitri yPaVbVaby=ab
145 prid1g aVaab
146 145 ad2antrl φABaVbVaab
147 146 adantr φABaVbVaby=abaab
148 eleq2 y=abayaab
149 148 ad2antll φABaVbVaby=abayaab
150 147 149 mpbird φABaVbVaby=abay
151 14 rspcv ayxyx=Ax=Ba=Aa=B
152 150 151 syl φABaVbVaby=abxyx=Ax=Ba=Aa=B
153 prid2g bVbab
154 153 ad2antll φABaVbVbab
155 154 adantr φABaVbVaby=abbab
156 eleq2 y=abbybab
157 156 ad2antll φABaVbVaby=abbybab
158 155 157 mpbird φABaVbVaby=abby
159 17 rspcv byxyx=Ax=Bb=Ab=B
160 158 159 syl φABaVbVaby=abxyx=Ax=Bb=Ab=B
161 simplrr φABaVbVaby=abb=Ab=Ba=Aa=By=ab
162 eqtr3 a=Ab=Aa=b
163 eqneqall a=babab=AB
164 163 com12 aba=bab=AB
165 164 ad2antrl φABaVbVaby=aba=bab=AB
166 165 com12 a=bφABaVbVaby=abab=AB
167 162 166 syl a=Ab=AφABaVbVaby=abab=AB
168 167 ex a=Ab=AφABaVbVaby=abab=AB
169 52 a1d b=Aa=BφABaVbVaby=abab=AB
170 169 expcom a=Bb=AφABaVbVaby=abab=AB
171 168 170 jaoi a=Aa=Bb=AφABaVbVaby=abab=AB
172 171 com12 b=Aa=Aa=BφABaVbVaby=abab=AB
173 44 a1d a=Ab=BφABaVbVaby=abab=AB
174 173 ex a=Ab=BφABaVbVaby=abab=AB
175 eqtr3 a=Bb=Ba=b
176 175 166 syl a=Bb=BφABaVbVaby=abab=AB
177 176 ex a=Bb=BφABaVbVaby=abab=AB
178 174 177 jaoi a=Aa=Bb=BφABaVbVaby=abab=AB
179 178 com12 b=Ba=Aa=BφABaVbVaby=abab=AB
180 172 179 jaoi b=Ab=Ba=Aa=BφABaVbVaby=abab=AB
181 180 imp b=Ab=Ba=Aa=BφABaVbVaby=abab=AB
182 181 impcom φABaVbVaby=abb=Ab=Ba=Aa=Bab=AB
183 161 182 eqtr2d φABaVbVaby=abb=Ab=Ba=Aa=BAB=y
184 183 exp32 φABaVbVaby=abb=Ab=Ba=Aa=BAB=y
185 160 184 syld φABaVbVaby=abxyx=Ax=Ba=Aa=BAB=y
186 152 185 mpdd φABaVbVaby=abxyx=Ax=BAB=y
187 186 ex φABaVbVaby=abxyx=Ax=BAB=y
188 187 rexlimdvva φABaVbVaby=abxyx=Ax=BAB=y
189 144 188 biimtrid φAByPxyx=Ax=BAB=y
190 189 imp φAByPxyx=Ax=BAB=y
191 190 ralrimiva φAByPxyx=Ax=BAB=y
192 141 191 jca φABxABx=Ax=ByPxyx=Ax=BAB=y
193 129 135 192 rspcedvd φABpPxpx=Ax=ByPxyx=Ax=Bp=y
194 raleq p=yxpx=Ax=Bxyx=Ax=B
195 194 reu8 ∃!pPxpx=Ax=BpPxpx=Ax=ByPxyx=Ax=Bp=y
196 193 195 sylibr φAB∃!pPxpx=Ax=B
197 196 ex φAB∃!pPxpx=Ax=B
198 122 197 impbid φ∃!pPxpx=Ax=BAB