Metamath Proof Explorer


Theorem pcprmpw2

Description: Self-referential expression for a prime power. (Contributed by Mario Carneiro, 16-Jan-2015)

Ref Expression
Assertion pcprmpw2 PAn0APnA=PPpCntA

Proof

Step Hyp Ref Expression
1 simplr PAn0APnA
2 1 nnnn0d PAn0APnA0
3 prmnn PP
4 3 ad2antrr PAn0APnP
5 pccl PAPpCntA0
6 5 adantr PAn0APnPpCntA0
7 4 6 nnexpcld PAn0APnPPpCntA
8 7 nnnn0d PAn0APnPPpCntA0
9 6 nn0red PAn0APnPpCntA
10 9 leidd PAn0APnPpCntAPpCntA
11 simpll PAn0APnP
12 6 nn0zd PAn0APnPpCntA
13 pcid PPpCntAPpCntPPpCntA=PpCntA
14 11 12 13 syl2anc PAn0APnPpCntPPpCntA=PpCntA
15 10 14 breqtrrd PAn0APnPpCntAPpCntPPpCntA
16 15 ad2antrr PAn0APnpp=PPpCntAPpCntPPpCntA
17 simpr PAn0APnpp=Pp=P
18 17 oveq1d PAn0APnpp=PppCntA=PpCntA
19 17 oveq1d PAn0APnpp=PppCntPPpCntA=PpCntPPpCntA
20 16 18 19 3brtr4d PAn0APnpp=PppCntAppCntPPpCntA
21 simplrr PAn0APnpAPn
22 prmz pp
23 22 adantl PAn0APnpp
24 1 adantr PAn0APnpA
25 24 nnzd PAn0APnpA
26 simprl PAn0APnn0
27 4 26 nnexpcld PAn0APnPn
28 27 adantr PAn0APnpPn
29 28 nnzd PAn0APnpPn
30 dvdstr pAPnpAAPnpPn
31 23 25 29 30 syl3anc PAn0APnppAAPnpPn
32 21 31 mpan2d PAn0APnppApPn
33 simpr PAn0APnpp
34 11 adantr PAn0APnpP
35 simplrl PAn0APnpn0
36 prmdvdsexpr pPn0pPnp=P
37 33 34 35 36 syl3anc PAn0APnppPnp=P
38 32 37 syld PAn0APnppAp=P
39 38 necon3ad PAn0APnppP¬pA
40 39 imp PAn0APnppP¬pA
41 simplr PAn0APnppPp
42 1 ad2antrr PAn0APnppPA
43 pceq0 pAppCntA=0¬pA
44 41 42 43 syl2anc PAn0APnppPppCntA=0¬pA
45 40 44 mpbird PAn0APnppPppCntA=0
46 7 ad2antrr PAn0APnppPPPpCntA
47 41 46 pccld PAn0APnppPppCntPPpCntA0
48 47 nn0ge0d PAn0APnppP0ppCntPPpCntA
49 45 48 eqbrtrd PAn0APnppPppCntAppCntPPpCntA
50 20 49 pm2.61dane PAn0APnpppCntAppCntPPpCntA
51 50 ralrimiva PAn0APnpppCntAppCntPPpCntA
52 1 nnzd PAn0APnA
53 7 nnzd PAn0APnPPpCntA
54 pc2dvds APPpCntAAPPpCntApppCntAppCntPPpCntA
55 52 53 54 syl2anc PAn0APnAPPpCntApppCntAppCntPPpCntA
56 51 55 mpbird PAn0APnAPPpCntA
57 pcdvds PAPPpCntAA
58 57 adantr PAn0APnPPpCntAA
59 dvdseq A0PPpCntA0APPpCntAPPpCntAAA=PPpCntA
60 2 8 56 58 59 syl22anc PAn0APnA=PPpCntA
61 60 rexlimdvaa PAn0APnA=PPpCntA
62 3 adantr PAP
63 62 5 nnexpcld PAPPpCntA
64 63 nnzd PAPPpCntA
65 iddvds PPpCntAPPpCntAPPpCntA
66 64 65 syl PAPPpCntAPPpCntA
67 oveq2 n=PpCntAPn=PPpCntA
68 67 breq2d n=PpCntAPPpCntAPnPPpCntAPPpCntA
69 68 rspcev PpCntA0PPpCntAPPpCntAn0PPpCntAPn
70 5 66 69 syl2anc PAn0PPpCntAPn
71 breq1 A=PPpCntAAPnPPpCntAPn
72 71 rexbidv A=PPpCntAn0APnn0PPpCntAPn
73 70 72 syl5ibrcom PAA=PPpCntAn0APn
74 61 73 impbid PAn0APnA=PPpCntA