Metamath Proof Explorer


Theorem pgpfac1lem1

Description: Lemma for pgpfac1 . (Contributed by Mario Carneiro, 27-Apr-2016)

Ref Expression
Hypotheses pgpfac1.k K=mrClsSubGrpG
pgpfac1.s S=KA
pgpfac1.b B=BaseG
pgpfac1.o O=odG
pgpfac1.e E=gExG
pgpfac1.z 0˙=0G
pgpfac1.l ˙=LSSumG
pgpfac1.p φPpGrpG
pgpfac1.g φGAbel
pgpfac1.n φBFin
pgpfac1.oe φOA=E
pgpfac1.u φUSubGrpG
pgpfac1.au φAU
pgpfac1.w φWSubGrpG
pgpfac1.i φSW=0˙
pgpfac1.ss φS˙WU
pgpfac1.2 φwSubGrpGwUAw¬S˙Ww
Assertion pgpfac1lem1 φCUS˙WS˙W˙KC=U

Proof

Step Hyp Ref Expression
1 pgpfac1.k K=mrClsSubGrpG
2 pgpfac1.s S=KA
3 pgpfac1.b B=BaseG
4 pgpfac1.o O=odG
5 pgpfac1.e E=gExG
6 pgpfac1.z 0˙=0G
7 pgpfac1.l ˙=LSSumG
8 pgpfac1.p φPpGrpG
9 pgpfac1.g φGAbel
10 pgpfac1.n φBFin
11 pgpfac1.oe φOA=E
12 pgpfac1.u φUSubGrpG
13 pgpfac1.au φAU
14 pgpfac1.w φWSubGrpG
15 pgpfac1.i φSW=0˙
16 pgpfac1.ss φS˙WU
17 pgpfac1.2 φwSubGrpGwUAw¬S˙Ww
18 16 adantr φCUS˙WS˙WU
19 ablgrp GAbelGGrp
20 3 subgacs GGrpSubGrpGACSB
21 acsmre SubGrpGACSBSubGrpGMooreB
22 9 19 20 21 4syl φSubGrpGMooreB
23 22 adantr φCUS˙WSubGrpGMooreB
24 eldifi CUS˙WCU
25 24 adantl φCUS˙WCU
26 25 snssd φCUS˙WCU
27 12 adantr φCUS˙WUSubGrpG
28 1 mrcsscl SubGrpGMooreBCUUSubGrpGKCU
29 23 26 27 28 syl3anc φCUS˙WKCU
30 3 subgss USubGrpGUB
31 12 30 syl φUB
32 31 13 sseldd φAB
33 1 mrcsncl SubGrpGMooreBABKASubGrpG
34 22 32 33 syl2anc φKASubGrpG
35 2 34 eqeltrid φSSubGrpG
36 7 lsmsubg2 GAbelSSubGrpGWSubGrpGS˙WSubGrpG
37 9 35 14 36 syl3anc φS˙WSubGrpG
38 37 adantr φCUS˙WS˙WSubGrpG
39 31 sselda φCUCB
40 24 39 sylan2 φCUS˙WCB
41 1 mrcsncl SubGrpGMooreBCBKCSubGrpG
42 23 40 41 syl2anc φCUS˙WKCSubGrpG
43 7 lsmlub S˙WSubGrpGKCSubGrpGUSubGrpGS˙WUKCUS˙W˙KCU
44 38 42 27 43 syl3anc φCUS˙WS˙WUKCUS˙W˙KCU
45 18 29 44 mpbi2and φCUS˙WS˙W˙KCU
46 7 lsmub1 S˙WSubGrpGKCSubGrpGS˙WS˙W˙KC
47 38 42 46 syl2anc φCUS˙WS˙WS˙W˙KC
48 7 lsmub2 S˙WSubGrpGKCSubGrpGKCS˙W˙KC
49 38 42 48 syl2anc φCUS˙WKCS˙W˙KC
50 40 snssd φCUS˙WCB
51 23 1 50 mrcssidd φCUS˙WCKC
52 snssg CBCKCCKC
53 40 52 syl φCUS˙WCKCCKC
54 51 53 mpbird φCUS˙WCKC
55 49 54 sseldd φCUS˙WCS˙W˙KC
56 eldifn CUS˙W¬CS˙W
57 56 adantl φCUS˙W¬CS˙W
58 47 55 57 ssnelpssd φCUS˙WS˙WS˙W˙KC
59 7 lsmub1 SSubGrpGWSubGrpGSS˙W
60 35 14 59 syl2anc φSS˙W
61 32 snssd φAB
62 22 1 61 mrcssidd φAKA
63 62 2 sseqtrrdi φAS
64 snssg AUASAS
65 13 64 syl φASAS
66 63 65 mpbird φAS
67 60 66 sseldd φAS˙W
68 67 adantr φCUS˙WAS˙W
69 47 68 sseldd φCUS˙WAS˙W˙KC
70 psseq1 w=S˙W˙KCwUS˙W˙KCU
71 eleq2 w=S˙W˙KCAwAS˙W˙KC
72 70 71 anbi12d w=S˙W˙KCwUAwS˙W˙KCUAS˙W˙KC
73 psseq2 w=S˙W˙KCS˙WwS˙WS˙W˙KC
74 73 notbid w=S˙W˙KC¬S˙Ww¬S˙WS˙W˙KC
75 72 74 imbi12d w=S˙W˙KCwUAw¬S˙WwS˙W˙KCUAS˙W˙KC¬S˙WS˙W˙KC
76 17 adantr φCUS˙WwSubGrpGwUAw¬S˙Ww
77 9 adantr φCUS˙WGAbel
78 7 lsmsubg2 GAbelS˙WSubGrpGKCSubGrpGS˙W˙KCSubGrpG
79 77 38 42 78 syl3anc φCUS˙WS˙W˙KCSubGrpG
80 75 76 79 rspcdva φCUS˙WS˙W˙KCUAS˙W˙KC¬S˙WS˙W˙KC
81 69 80 mpan2d φCUS˙WS˙W˙KCU¬S˙WS˙W˙KC
82 58 81 mt2d φCUS˙W¬S˙W˙KCU
83 npss ¬S˙W˙KCUS˙W˙KCUS˙W˙KC=U
84 82 83 sylib φCUS˙WS˙W˙KCUS˙W˙KC=U
85 45 84 mpd φCUS˙WS˙W˙KC=U