Step |
Hyp |
Ref |
Expression |
1 |
|
0ss |
|
2 |
|
sspsstr |
|
3 |
1 2
|
mpan |
|
4 |
|
0pss |
|
5 |
|
df-ne |
|
6 |
4 5
|
bitri |
|
7 |
3 6
|
sylib |
|
8 |
|
nn0suc |
|
9 |
8
|
orcanai |
|
10 |
7 9
|
sylan2 |
|
11 |
|
pssnel |
|
12 |
|
pssss |
|
13 |
|
ssdif |
|
14 |
|
disjsn |
|
15 |
|
disj3 |
|
16 |
14 15
|
bitr3i |
|
17 |
|
sseq1 |
|
18 |
16 17
|
sylbi |
|
19 |
13 18
|
imbitrrid |
|
20 |
12 19
|
syl5 |
|
21 |
|
peano2 |
|
22 |
|
nnfi |
|
23 |
|
diffi |
|
24 |
|
ssdomfi |
|
25 |
21 22 23 24
|
4syl |
|
26 |
20 25
|
sylan9 |
|
27 |
26
|
3impia |
|
28 |
27
|
3com23 |
|
29 |
28
|
3expa |
|
30 |
29
|
adantrr |
|
31 |
|
nnfi |
|
32 |
31
|
ad2antrl |
|
33 |
|
simpl |
|
34 |
|
simpr |
|
35 |
|
phplem1 |
|
36 |
|
ensymfib |
|
37 |
31 36
|
syl |
|
38 |
37
|
adantr |
|
39 |
35 38
|
mpbid |
|
40 |
|
endom |
|
41 |
39 40
|
syl |
|
42 |
|
domtrfir |
|
43 |
41 42
|
syl3an3 |
|
44 |
32 33 34 43
|
syl3anc |
|
45 |
30 44
|
sylancom |
|
46 |
45
|
exp43 |
|
47 |
46
|
com4r |
|
48 |
47
|
imp |
|
49 |
48
|
exlimiv |
|
50 |
11 49
|
mpcom |
|
51 |
|
simp1 |
|
52 |
|
endom |
|
53 |
|
domtrfir |
|
54 |
52 53
|
syl3an2 |
|
55 |
31 54
|
syl3an1 |
|
56 |
|
sssucid |
|
57 |
|
ssdomfi |
|
58 |
22 56 57
|
mpisyl |
|
59 |
21 58
|
syl |
|
60 |
59
|
adantr |
|
61 |
|
sbthfi |
|
62 |
31 61
|
syl3an1 |
|
63 |
60 62
|
mpd3an3 |
|
64 |
51 55 63
|
syl2anc |
|
65 |
64
|
3com23 |
|
66 |
65
|
3expia |
|
67 |
|
peano2b |
|
68 |
|
nnord |
|
69 |
67 68
|
sylbi |
|
70 |
|
vex |
|
71 |
70
|
sucid |
|
72 |
|
nordeq |
|
73 |
69 71 72
|
sylancl |
|
74 |
|
nneneq |
|
75 |
67 74
|
sylanb |
|
76 |
75
|
anidms |
|
77 |
76
|
necon3bbid |
|
78 |
73 77
|
mpbird |
|
79 |
66 78
|
nsyli |
|
80 |
79
|
expcom |
|
81 |
80
|
pm2.43d |
|
82 |
50 81
|
syli |
|
83 |
82
|
com12 |
|
84 |
|
psseq2 |
|
85 |
|
breq1 |
|
86 |
85
|
notbid |
|
87 |
84 86
|
imbi12d |
|
88 |
83 87
|
syl5ibrcom |
|
89 |
88
|
rexlimiv |
|
90 |
10 89
|
syl |
|
91 |
90
|
syldbl2 |
|