| Step |
Hyp |
Ref |
Expression |
| 1 |
|
phtpycc.1 |
|
| 2 |
|
phtpycc.3 |
|
| 3 |
|
phtpycc.4 |
|
| 4 |
|
phtpycc.5 |
|
| 5 |
|
phtpycc.6 |
|
| 6 |
|
phtpycc.7 |
|
| 7 |
|
iitopon |
|
| 8 |
7
|
a1i |
|
| 9 |
2 3
|
phtpyhtpy |
|
| 10 |
9 5
|
sseldd |
|
| 11 |
3 4
|
phtpyhtpy |
|
| 12 |
11 6
|
sseldd |
|
| 13 |
1 8 2 3 4 10 12
|
htpycc |
|
| 14 |
|
0elunit |
|
| 15 |
|
simpr |
|
| 16 |
|
simpr |
|
| 17 |
16
|
breq1d |
|
| 18 |
|
simpl |
|
| 19 |
16
|
oveq2d |
|
| 20 |
18 19
|
oveq12d |
|
| 21 |
19
|
oveq1d |
|
| 22 |
18 21
|
oveq12d |
|
| 23 |
17 20 22
|
ifbieq12d |
|
| 24 |
|
ovex |
|
| 25 |
|
ovex |
|
| 26 |
24 25
|
ifex |
|
| 27 |
23 1 26
|
ovmpoa |
|
| 28 |
14 15 27
|
sylancr |
|
| 29 |
|
simpll |
|
| 30 |
|
elii1 |
|
| 31 |
|
iihalf1 |
|
| 32 |
30 31
|
sylbir |
|
| 33 |
32
|
adantll |
|
| 34 |
2 3 5
|
phtpyi |
|
| 35 |
29 33 34
|
syl2anc |
|
| 36 |
35
|
simpld |
|
| 37 |
|
simpll |
|
| 38 |
|
elii2 |
|
| 39 |
|
iihalf2 |
|
| 40 |
38 39
|
syl |
|
| 41 |
40
|
adantll |
|
| 42 |
3 4 6
|
phtpyi |
|
| 43 |
37 41 42
|
syl2anc |
|
| 44 |
43
|
simpld |
|
| 45 |
2 3 5
|
phtpy01 |
|
| 46 |
45
|
ad2antrr |
|
| 47 |
46
|
simpld |
|
| 48 |
44 47
|
eqtr4d |
|
| 49 |
36 48
|
ifeqda |
|
| 50 |
28 49
|
eqtrd |
|
| 51 |
|
1elunit |
|
| 52 |
|
simpr |
|
| 53 |
52
|
breq1d |
|
| 54 |
|
simpl |
|
| 55 |
52
|
oveq2d |
|
| 56 |
54 55
|
oveq12d |
|
| 57 |
55
|
oveq1d |
|
| 58 |
54 57
|
oveq12d |
|
| 59 |
53 56 58
|
ifbieq12d |
|
| 60 |
|
ovex |
|
| 61 |
|
ovex |
|
| 62 |
60 61
|
ifex |
|
| 63 |
59 1 62
|
ovmpoa |
|
| 64 |
51 15 63
|
sylancr |
|
| 65 |
35
|
simprd |
|
| 66 |
43
|
simprd |
|
| 67 |
46
|
simprd |
|
| 68 |
66 67
|
eqtr4d |
|
| 69 |
65 68
|
ifeqda |
|
| 70 |
64 69
|
eqtrd |
|
| 71 |
2 4 13 50 70
|
isphtpyd |
|