Metamath Proof Explorer


Theorem phtpycc

Description: Concatenate two path homotopies. (Contributed by Jeff Madsen, 2-Sep-2009) (Proof shortened by Mario Carneiro, 7-Jun-2014)

Ref Expression
Hypotheses phtpycc.1 M=x01,y01ify12xK2yxL2y1
phtpycc.3 φFIICnJ
phtpycc.4 φGIICnJ
phtpycc.5 φHIICnJ
phtpycc.6 φKFPHtpyJG
phtpycc.7 φLGPHtpyJH
Assertion phtpycc φMFPHtpyJH

Proof

Step Hyp Ref Expression
1 phtpycc.1 M=x01,y01ify12xK2yxL2y1
2 phtpycc.3 φFIICnJ
3 phtpycc.4 φGIICnJ
4 phtpycc.5 φHIICnJ
5 phtpycc.6 φKFPHtpyJG
6 phtpycc.7 φLGPHtpyJH
7 iitopon IITopOn01
8 7 a1i φIITopOn01
9 2 3 phtpyhtpy φFPHtpyJGFIIHtpyJG
10 9 5 sseldd φKFIIHtpyJG
11 3 4 phtpyhtpy φGPHtpyJHGIIHtpyJH
12 11 6 sseldd φLGIIHtpyJH
13 1 8 2 3 4 10 12 htpycc φMFIIHtpyJH
14 0elunit 001
15 simpr φs01s01
16 simpr x=0y=sy=s
17 16 breq1d x=0y=sy12s12
18 simpl x=0y=sx=0
19 16 oveq2d x=0y=s2y=2s
20 18 19 oveq12d x=0y=sxK2y=0K2s
21 19 oveq1d x=0y=s2y1=2s1
22 18 21 oveq12d x=0y=sxL2y1=0L2s1
23 17 20 22 ifbieq12d x=0y=sify12xK2yxL2y1=ifs120K2s0L2s1
24 ovex 0K2sV
25 ovex 0L2s1V
26 24 25 ifex ifs120K2s0L2s1V
27 23 1 26 ovmpoa 001s010Ms=ifs120K2s0L2s1
28 14 15 27 sylancr φs010Ms=ifs120K2s0L2s1
29 simpll φs01s12φ
30 elii1 s012s01s12
31 iihalf1 s0122s01
32 30 31 sylbir s01s122s01
33 32 adantll φs01s122s01
34 2 3 5 phtpyi φ2s010K2s=F01K2s=F1
35 29 33 34 syl2anc φs01s120K2s=F01K2s=F1
36 35 simpld φs01s120K2s=F0
37 simpll φs01¬s12φ
38 elii2 s01¬s12s121
39 iihalf2 s1212s101
40 38 39 syl s01¬s122s101
41 40 adantll φs01¬s122s101
42 3 4 6 phtpyi φ2s1010L2s1=G01L2s1=G1
43 37 41 42 syl2anc φs01¬s120L2s1=G01L2s1=G1
44 43 simpld φs01¬s120L2s1=G0
45 2 3 5 phtpy01 φF0=G0F1=G1
46 45 ad2antrr φs01¬s12F0=G0F1=G1
47 46 simpld φs01¬s12F0=G0
48 44 47 eqtr4d φs01¬s120L2s1=F0
49 36 48 ifeqda φs01ifs120K2s0L2s1=F0
50 28 49 eqtrd φs010Ms=F0
51 1elunit 101
52 simpr x=1y=sy=s
53 52 breq1d x=1y=sy12s12
54 simpl x=1y=sx=1
55 52 oveq2d x=1y=s2y=2s
56 54 55 oveq12d x=1y=sxK2y=1K2s
57 55 oveq1d x=1y=s2y1=2s1
58 54 57 oveq12d x=1y=sxL2y1=1L2s1
59 53 56 58 ifbieq12d x=1y=sify12xK2yxL2y1=ifs121K2s1L2s1
60 ovex 1K2sV
61 ovex 1L2s1V
62 60 61 ifex ifs121K2s1L2s1V
63 59 1 62 ovmpoa 101s011Ms=ifs121K2s1L2s1
64 51 15 63 sylancr φs011Ms=ifs121K2s1L2s1
65 35 simprd φs01s121K2s=F1
66 43 simprd φs01¬s121L2s1=G1
67 46 simprd φs01¬s12F1=G1
68 66 67 eqtr4d φs01¬s121L2s1=F1
69 65 68 ifeqda φs01ifs121K2s1L2s1=F1
70 64 69 eqtrd φs011Ms=F1
71 2 4 13 50 70 isphtpyd φMFPHtpyJH