Metamath Proof Explorer


Theorem pj1ghm

Description: The left projection function is a group homomorphism. (Contributed by Mario Carneiro, 21-Apr-2016)

Ref Expression
Hypotheses pj1eu.a +˙=+G
pj1eu.s ˙=LSSumG
pj1eu.o 0˙=0G
pj1eu.z Z=CntzG
pj1eu.2 φTSubGrpG
pj1eu.3 φUSubGrpG
pj1eu.4 φTU=0˙
pj1eu.5 φTZU
pj1f.p P=proj1G
Assertion pj1ghm φTPUG𝑠T˙UGrpHomG

Proof

Step Hyp Ref Expression
1 pj1eu.a +˙=+G
2 pj1eu.s ˙=LSSumG
3 pj1eu.o 0˙=0G
4 pj1eu.z Z=CntzG
5 pj1eu.2 φTSubGrpG
6 pj1eu.3 φUSubGrpG
7 pj1eu.4 φTU=0˙
8 pj1eu.5 φTZU
9 pj1f.p P=proj1G
10 eqid BaseG𝑠T˙U=BaseG𝑠T˙U
11 eqid BaseG=BaseG
12 ovex T˙UV
13 eqid G𝑠T˙U=G𝑠T˙U
14 13 1 ressplusg T˙UV+˙=+G𝑠T˙U
15 12 14 ax-mp +˙=+G𝑠T˙U
16 2 4 lsmsubg TSubGrpGUSubGrpGTZUT˙USubGrpG
17 5 6 8 16 syl3anc φT˙USubGrpG
18 13 subggrp T˙USubGrpGG𝑠T˙UGrp
19 17 18 syl φG𝑠T˙UGrp
20 subgrcl TSubGrpGGGrp
21 5 20 syl φGGrp
22 1 2 3 4 5 6 7 8 9 pj1f φTPU:T˙UT
23 11 subgss TSubGrpGTBaseG
24 5 23 syl φTBaseG
25 22 24 fssd φTPU:T˙UBaseG
26 13 subgbas T˙USubGrpGT˙U=BaseG𝑠T˙U
27 17 26 syl φT˙U=BaseG𝑠T˙U
28 27 feq2d φTPU:T˙UBaseGTPU:BaseG𝑠T˙UBaseG
29 25 28 mpbid φTPU:BaseG𝑠T˙UBaseG
30 27 eleq2d φxT˙UxBaseG𝑠T˙U
31 27 eleq2d φyT˙UyBaseG𝑠T˙U
32 30 31 anbi12d φxT˙UyT˙UxBaseG𝑠T˙UyBaseG𝑠T˙U
33 32 biimpar φxBaseG𝑠T˙UyBaseG𝑠T˙UxT˙UyT˙U
34 1 2 3 4 5 6 7 8 9 pj1id φxT˙Ux=TPUx+˙UPTx
35 34 adantrr φxT˙UyT˙Ux=TPUx+˙UPTx
36 1 2 3 4 5 6 7 8 9 pj1id φyT˙Uy=TPUy+˙UPTy
37 36 adantrl φxT˙UyT˙Uy=TPUy+˙UPTy
38 35 37 oveq12d φxT˙UyT˙Ux+˙y=TPUx+˙UPTx+˙TPUy+˙UPTy
39 5 adantr φxT˙UyT˙UTSubGrpG
40 grpmnd GGrpGMnd
41 39 20 40 3syl φxT˙UyT˙UGMnd
42 39 23 syl φxT˙UyT˙UTBaseG
43 simpl xT˙UyT˙UxT˙U
44 ffvelcdm TPU:T˙UTxT˙UTPUxT
45 22 43 44 syl2an φxT˙UyT˙UTPUxT
46 42 45 sseldd φxT˙UyT˙UTPUxBaseG
47 simpr xT˙UyT˙UyT˙U
48 ffvelcdm TPU:T˙UTyT˙UTPUyT
49 22 47 48 syl2an φxT˙UyT˙UTPUyT
50 42 49 sseldd φxT˙UyT˙UTPUyBaseG
51 6 adantr φxT˙UyT˙UUSubGrpG
52 11 subgss USubGrpGUBaseG
53 51 52 syl φxT˙UyT˙UUBaseG
54 1 2 3 4 5 6 7 8 9 pj2f φUPT:T˙UU
55 ffvelcdm UPT:T˙UUxT˙UUPTxU
56 54 43 55 syl2an φxT˙UyT˙UUPTxU
57 53 56 sseldd φxT˙UyT˙UUPTxBaseG
58 ffvelcdm UPT:T˙UUyT˙UUPTyU
59 54 47 58 syl2an φxT˙UyT˙UUPTyU
60 53 59 sseldd φxT˙UyT˙UUPTyBaseG
61 8 adantr φxT˙UyT˙UTZU
62 61 49 sseldd φxT˙UyT˙UTPUyZU
63 1 4 cntzi TPUyZUUPTxUTPUy+˙UPTx=UPTx+˙TPUy
64 62 56 63 syl2anc φxT˙UyT˙UTPUy+˙UPTx=UPTx+˙TPUy
65 11 1 41 46 50 57 60 64 mnd4g φxT˙UyT˙UTPUx+˙TPUy+˙UPTx+˙UPTy=TPUx+˙UPTx+˙TPUy+˙UPTy
66 38 65 eqtr4d φxT˙UyT˙Ux+˙y=TPUx+˙TPUy+˙UPTx+˙UPTy
67 7 adantr φxT˙UyT˙UTU=0˙
68 1 subgcl T˙USubGrpGxT˙UyT˙Ux+˙yT˙U
69 68 3expb T˙USubGrpGxT˙UyT˙Ux+˙yT˙U
70 17 69 sylan φxT˙UyT˙Ux+˙yT˙U
71 1 subgcl TSubGrpGTPUxTTPUyTTPUx+˙TPUyT
72 39 45 49 71 syl3anc φxT˙UyT˙UTPUx+˙TPUyT
73 1 subgcl USubGrpGUPTxUUPTyUUPTx+˙UPTyU
74 51 56 59 73 syl3anc φxT˙UyT˙UUPTx+˙UPTyU
75 1 2 3 4 39 51 67 61 9 70 72 74 pj1eq φxT˙UyT˙Ux+˙y=TPUx+˙TPUy+˙UPTx+˙UPTyTPUx+˙y=TPUx+˙TPUyUPTx+˙y=UPTx+˙UPTy
76 66 75 mpbid φxT˙UyT˙UTPUx+˙y=TPUx+˙TPUyUPTx+˙y=UPTx+˙UPTy
77 76 simpld φxT˙UyT˙UTPUx+˙y=TPUx+˙TPUy
78 33 77 syldan φxBaseG𝑠T˙UyBaseG𝑠T˙UTPUx+˙y=TPUx+˙TPUy
79 10 11 15 1 19 21 29 78 isghmd φTPUG𝑠T˙UGrpHomG