| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pj1eu.a |  | 
						
							| 2 |  | pj1eu.s |  | 
						
							| 3 |  | pj1eu.o |  | 
						
							| 4 |  | pj1eu.z |  | 
						
							| 5 |  | pj1eu.2 |  | 
						
							| 6 |  | pj1eu.3 |  | 
						
							| 7 |  | pj1eu.4 |  | 
						
							| 8 |  | pj1eu.5 |  | 
						
							| 9 |  | pj1f.p |  | 
						
							| 10 |  | subgrcl |  | 
						
							| 11 | 5 10 | syl |  | 
						
							| 12 |  | eqid |  | 
						
							| 13 | 12 | subgss |  | 
						
							| 14 | 5 13 | syl |  | 
						
							| 15 | 12 | subgss |  | 
						
							| 16 | 6 15 | syl |  | 
						
							| 17 | 11 14 16 | 3jca |  | 
						
							| 18 | 12 1 2 9 | pj1val |  | 
						
							| 19 | 17 18 | sylan |  | 
						
							| 20 | 1 2 3 4 5 6 7 8 | pj1eu |  | 
						
							| 21 |  | riotacl2 |  | 
						
							| 22 | 20 21 | syl |  | 
						
							| 23 | 19 22 | eqeltrd |  | 
						
							| 24 |  | oveq1 |  | 
						
							| 25 | 24 | eqeq2d |  | 
						
							| 26 | 25 | rexbidv |  | 
						
							| 27 | 26 | elrab |  | 
						
							| 28 | 27 | simprbi |  | 
						
							| 29 | 23 28 | syl |  | 
						
							| 30 |  | simprr |  | 
						
							| 31 | 11 | ad2antrr |  | 
						
							| 32 | 16 | ad2antrr |  | 
						
							| 33 | 14 | ad2antrr |  | 
						
							| 34 |  | simplr |  | 
						
							| 35 | 2 4 | lsmcom2 |  | 
						
							| 36 | 5 6 8 35 | syl3anc |  | 
						
							| 37 | 36 | ad2antrr |  | 
						
							| 38 | 34 37 | eleqtrd |  | 
						
							| 39 | 12 1 2 9 | pj1val |  | 
						
							| 40 | 31 32 33 38 39 | syl31anc |  | 
						
							| 41 | 1 2 3 4 5 6 7 8 9 | pj1f |  | 
						
							| 42 | 41 | ad2antrr |  | 
						
							| 43 | 42 34 | ffvelcdmd |  | 
						
							| 44 | 8 | ad2antrr |  | 
						
							| 45 | 44 43 | sseldd |  | 
						
							| 46 |  | simprl |  | 
						
							| 47 | 1 4 | cntzi |  | 
						
							| 48 | 45 46 47 | syl2anc |  | 
						
							| 49 | 30 48 | eqtrd |  | 
						
							| 50 |  | oveq2 |  | 
						
							| 51 | 50 | rspceeqv |  | 
						
							| 52 | 43 49 51 | syl2anc |  | 
						
							| 53 |  | simpll |  | 
						
							| 54 |  | incom |  | 
						
							| 55 | 54 7 | eqtrid |  | 
						
							| 56 | 4 5 6 8 | cntzrecd |  | 
						
							| 57 | 1 2 3 4 6 5 55 56 | pj1eu |  | 
						
							| 58 | 53 38 57 | syl2anc |  | 
						
							| 59 |  | oveq1 |  | 
						
							| 60 | 59 | eqeq2d |  | 
						
							| 61 | 60 | rexbidv |  | 
						
							| 62 | 61 | riota2 |  | 
						
							| 63 | 46 58 62 | syl2anc |  | 
						
							| 64 | 52 63 | mpbid |  | 
						
							| 65 | 40 64 | eqtrd |  | 
						
							| 66 | 65 | oveq2d |  | 
						
							| 67 | 30 66 | eqtr4d |  | 
						
							| 68 | 29 67 | rexlimddv |  |