Metamath Proof Explorer


Theorem pj1id

Description: Any element of a direct subspace sum can be decomposed into projections onto the left and right factors. (Contributed by Mario Carneiro, 15-Oct-2015) (Revised by Mario Carneiro, 21-Apr-2016)

Ref Expression
Hypotheses pj1eu.a +˙=+G
pj1eu.s ˙=LSSumG
pj1eu.o 0˙=0G
pj1eu.z Z=CntzG
pj1eu.2 φTSubGrpG
pj1eu.3 φUSubGrpG
pj1eu.4 φTU=0˙
pj1eu.5 φTZU
pj1f.p P=proj1G
Assertion pj1id φXT˙UX=TPUX+˙UPTX

Proof

Step Hyp Ref Expression
1 pj1eu.a +˙=+G
2 pj1eu.s ˙=LSSumG
3 pj1eu.o 0˙=0G
4 pj1eu.z Z=CntzG
5 pj1eu.2 φTSubGrpG
6 pj1eu.3 φUSubGrpG
7 pj1eu.4 φTU=0˙
8 pj1eu.5 φTZU
9 pj1f.p P=proj1G
10 subgrcl TSubGrpGGGrp
11 5 10 syl φGGrp
12 eqid BaseG=BaseG
13 12 subgss TSubGrpGTBaseG
14 5 13 syl φTBaseG
15 12 subgss USubGrpGUBaseG
16 6 15 syl φUBaseG
17 11 14 16 3jca φGGrpTBaseGUBaseG
18 12 1 2 9 pj1val GGrpTBaseGUBaseGXT˙UTPUX=ιxT|yUX=x+˙y
19 17 18 sylan φXT˙UTPUX=ιxT|yUX=x+˙y
20 1 2 3 4 5 6 7 8 pj1eu φXT˙U∃!xTyUX=x+˙y
21 riotacl2 ∃!xTyUX=x+˙yιxT|yUX=x+˙yxT|yUX=x+˙y
22 20 21 syl φXT˙UιxT|yUX=x+˙yxT|yUX=x+˙y
23 19 22 eqeltrd φXT˙UTPUXxT|yUX=x+˙y
24 oveq1 x=TPUXx+˙y=TPUX+˙y
25 24 eqeq2d x=TPUXX=x+˙yX=TPUX+˙y
26 25 rexbidv x=TPUXyUX=x+˙yyUX=TPUX+˙y
27 26 elrab TPUXxT|yUX=x+˙yTPUXTyUX=TPUX+˙y
28 27 simprbi TPUXxT|yUX=x+˙yyUX=TPUX+˙y
29 23 28 syl φXT˙UyUX=TPUX+˙y
30 simprr φXT˙UyUX=TPUX+˙yX=TPUX+˙y
31 11 ad2antrr φXT˙UyUX=TPUX+˙yGGrp
32 16 ad2antrr φXT˙UyUX=TPUX+˙yUBaseG
33 14 ad2antrr φXT˙UyUX=TPUX+˙yTBaseG
34 simplr φXT˙UyUX=TPUX+˙yXT˙U
35 2 4 lsmcom2 TSubGrpGUSubGrpGTZUT˙U=U˙T
36 5 6 8 35 syl3anc φT˙U=U˙T
37 36 ad2antrr φXT˙UyUX=TPUX+˙yT˙U=U˙T
38 34 37 eleqtrd φXT˙UyUX=TPUX+˙yXU˙T
39 12 1 2 9 pj1val GGrpUBaseGTBaseGXU˙TUPTX=ιuU|vTX=u+˙v
40 31 32 33 38 39 syl31anc φXT˙UyUX=TPUX+˙yUPTX=ιuU|vTX=u+˙v
41 1 2 3 4 5 6 7 8 9 pj1f φTPU:T˙UT
42 41 ad2antrr φXT˙UyUX=TPUX+˙yTPU:T˙UT
43 42 34 ffvelcdmd φXT˙UyUX=TPUX+˙yTPUXT
44 8 ad2antrr φXT˙UyUX=TPUX+˙yTZU
45 44 43 sseldd φXT˙UyUX=TPUX+˙yTPUXZU
46 simprl φXT˙UyUX=TPUX+˙yyU
47 1 4 cntzi TPUXZUyUTPUX+˙y=y+˙TPUX
48 45 46 47 syl2anc φXT˙UyUX=TPUX+˙yTPUX+˙y=y+˙TPUX
49 30 48 eqtrd φXT˙UyUX=TPUX+˙yX=y+˙TPUX
50 oveq2 v=TPUXy+˙v=y+˙TPUX
51 50 rspceeqv TPUXTX=y+˙TPUXvTX=y+˙v
52 43 49 51 syl2anc φXT˙UyUX=TPUX+˙yvTX=y+˙v
53 simpll φXT˙UyUX=TPUX+˙yφ
54 incom UT=TU
55 54 7 eqtrid φUT=0˙
56 4 5 6 8 cntzrecd φUZT
57 1 2 3 4 6 5 55 56 pj1eu φXU˙T∃!uUvTX=u+˙v
58 53 38 57 syl2anc φXT˙UyUX=TPUX+˙y∃!uUvTX=u+˙v
59 oveq1 u=yu+˙v=y+˙v
60 59 eqeq2d u=yX=u+˙vX=y+˙v
61 60 rexbidv u=yvTX=u+˙vvTX=y+˙v
62 61 riota2 yU∃!uUvTX=u+˙vvTX=y+˙vιuU|vTX=u+˙v=y
63 46 58 62 syl2anc φXT˙UyUX=TPUX+˙yvTX=y+˙vιuU|vTX=u+˙v=y
64 52 63 mpbid φXT˙UyUX=TPUX+˙yιuU|vTX=u+˙v=y
65 40 64 eqtrd φXT˙UyUX=TPUX+˙yUPTX=y
66 65 oveq2d φXT˙UyUX=TPUX+˙yTPUX+˙UPTX=TPUX+˙y
67 30 66 eqtr4d φXT˙UyUX=TPUX+˙yX=TPUX+˙UPTX
68 29 67 rexlimddv φXT˙UX=TPUX+˙UPTX