Metamath Proof Explorer


Theorem pjfo

Description: A projection is a surjection onto the subspace. (Contributed by Mario Carneiro, 16-Oct-2015)

Ref Expression
Hypotheses pjf.k K=projW
pjf.v V=BaseW
Assertion pjfo WPreHilTdomKKT:VontoT

Proof

Step Hyp Ref Expression
1 pjf.k K=projW
2 pjf.v V=BaseW
3 1 2 pjf2 WPreHilTdomKKT:VT
4 3 frnd WPreHilTdomKranKTT
5 eqid ocvW=ocvW
6 eqid proj1W=proj1W
7 5 6 1 pjval TdomKKT=Tproj1WocvWT
8 7 ad2antlr WPreHilTdomKxTKT=Tproj1WocvWT
9 8 fveq1d WPreHilTdomKxTKTx=Tproj1WocvWTx
10 eqid +W=+W
11 eqid LSSumW=LSSumW
12 eqid 0W=0W
13 eqid CntzW=CntzW
14 phllmod WPreHilWLMod
15 14 adantr WPreHilTdomKWLMod
16 eqid LSubSpW=LSubSpW
17 16 lsssssubg WLModLSubSpWSubGrpW
18 15 17 syl WPreHilTdomKLSubSpWSubGrpW
19 2 16 5 11 1 pjdm2 WPreHilTdomKTLSubSpWTLSSumWocvWT=V
20 19 simprbda WPreHilTdomKTLSubSpW
21 18 20 sseldd WPreHilTdomKTSubGrpW
22 2 16 lssss TLSubSpWTV
23 20 22 syl WPreHilTdomKTV
24 2 5 16 ocvlss WPreHilTVocvWTLSubSpW
25 23 24 syldan WPreHilTdomKocvWTLSubSpW
26 18 25 sseldd WPreHilTdomKocvWTSubGrpW
27 5 16 12 ocvin WPreHilTLSubSpWTocvWT=0W
28 20 27 syldan WPreHilTdomKTocvWT=0W
29 lmodabl WLModWAbel
30 15 29 syl WPreHilTdomKWAbel
31 13 30 21 26 ablcntzd WPreHilTdomKTCntzWocvWT
32 10 11 12 13 21 26 28 31 6 pj1lid WPreHilTdomKxTTproj1WocvWTx=x
33 9 32 eqtrd WPreHilTdomKxTKTx=x
34 3 ffnd WPreHilTdomKKTFnV
35 23 sselda WPreHilTdomKxTxV
36 fnfvelrn KTFnVxVKTxranKT
37 34 35 36 syl2an2r WPreHilTdomKxTKTxranKT
38 33 37 eqeltrrd WPreHilTdomKxTxranKT
39 4 38 eqelssd WPreHilTdomKranKT=T
40 dffo2 KT:VontoTKT:VTranKT=T
41 3 39 40 sylanbrc WPreHilTdomKKT:VontoT