| Step | Hyp | Ref | Expression | 
						
							| 1 |  | plydiv.pl |  | 
						
							| 2 |  | plydiv.tm |  | 
						
							| 3 |  | plydiv.rc |  | 
						
							| 4 |  | plydiv.m1 |  | 
						
							| 5 |  | plydiv.f |  | 
						
							| 6 |  | plydiv.g |  | 
						
							| 7 |  | plydiv.z |  | 
						
							| 8 |  | plydiv.r |  | 
						
							| 9 |  | dgrcl |  | 
						
							| 10 | 5 9 | syl |  | 
						
							| 11 | 10 | nn0red |  | 
						
							| 12 |  | dgrcl |  | 
						
							| 13 | 6 12 | syl |  | 
						
							| 14 | 13 | nn0red |  | 
						
							| 15 | 11 14 | resubcld |  | 
						
							| 16 |  | arch |  | 
						
							| 17 | 15 16 | syl |  | 
						
							| 18 |  | olc |  | 
						
							| 19 |  | eqeq1 |  | 
						
							| 20 |  | fveq2 |  | 
						
							| 21 | 20 | oveq1d |  | 
						
							| 22 | 21 | breq1d |  | 
						
							| 23 | 19 22 | orbi12d |  | 
						
							| 24 |  | oveq1 |  | 
						
							| 25 | 24 8 | eqtr4di |  | 
						
							| 26 | 25 | eqeq1d |  | 
						
							| 27 | 25 | fveq2d |  | 
						
							| 28 | 27 | breq1d |  | 
						
							| 29 | 26 28 | orbi12d |  | 
						
							| 30 | 29 | rexbidv |  | 
						
							| 31 | 23 30 | imbi12d |  | 
						
							| 32 |  | nnnn0 |  | 
						
							| 33 |  | breq2 |  | 
						
							| 34 | 33 | orbi2d |  | 
						
							| 35 | 34 | imbi1d |  | 
						
							| 36 | 35 | ralbidv |  | 
						
							| 37 | 36 | imbi2d |  | 
						
							| 38 |  | breq2 |  | 
						
							| 39 | 38 | orbi2d |  | 
						
							| 40 | 39 | imbi1d |  | 
						
							| 41 | 40 | ralbidv |  | 
						
							| 42 | 41 | imbi2d |  | 
						
							| 43 |  | breq2 |  | 
						
							| 44 | 43 | orbi2d |  | 
						
							| 45 | 44 | imbi1d |  | 
						
							| 46 | 45 | ralbidv |  | 
						
							| 47 | 46 | imbi2d |  | 
						
							| 48 | 1 | adantlr |  | 
						
							| 49 | 2 | adantlr |  | 
						
							| 50 | 3 | adantlr |  | 
						
							| 51 | 4 | adantr |  | 
						
							| 52 |  | simprl |  | 
						
							| 53 | 6 | adantr |  | 
						
							| 54 | 7 | adantr |  | 
						
							| 55 |  | eqid |  | 
						
							| 56 |  | simprr |  | 
						
							| 57 | 48 49 50 51 52 53 54 55 56 | plydivlem3 |  | 
						
							| 58 | 57 | expr |  | 
						
							| 59 | 58 | ralrimiva |  | 
						
							| 60 |  | eqeq1 |  | 
						
							| 61 |  | fveq2 |  | 
						
							| 62 | 61 | oveq1d |  | 
						
							| 63 | 62 | breq1d |  | 
						
							| 64 | 60 63 | orbi12d |  | 
						
							| 65 |  | oveq1 |  | 
						
							| 66 | 65 | eqeq1d |  | 
						
							| 67 | 65 | fveq2d |  | 
						
							| 68 | 67 | breq1d |  | 
						
							| 69 | 66 68 | orbi12d |  | 
						
							| 70 | 69 | rexbidv |  | 
						
							| 71 | 64 70 | imbi12d |  | 
						
							| 72 | 71 | cbvralvw |  | 
						
							| 73 |  | simplll |  | 
						
							| 74 | 73 1 | sylan |  | 
						
							| 75 | 73 2 | sylan |  | 
						
							| 76 | 73 3 | sylan |  | 
						
							| 77 | 73 4 | syl |  | 
						
							| 78 |  | simplr |  | 
						
							| 79 | 73 6 | syl |  | 
						
							| 80 | 73 7 | syl |  | 
						
							| 81 |  | simpllr |  | 
						
							| 82 |  | simprrr |  | 
						
							| 83 |  | simprrl |  | 
						
							| 84 |  | eqid |  | 
						
							| 85 |  | oveq1 |  | 
						
							| 86 | 85 | oveq2d |  | 
						
							| 87 | 86 | cbvmptv |  | 
						
							| 88 |  | simprl |  | 
						
							| 89 |  | oveq2 |  | 
						
							| 90 | 89 | oveq2d |  | 
						
							| 91 | 90 | eqeq1d |  | 
						
							| 92 | 90 | fveq2d |  | 
						
							| 93 | 92 | breq1d |  | 
						
							| 94 | 91 93 | orbi12d |  | 
						
							| 95 | 94 | cbvrexvw |  | 
						
							| 96 | 95 | imbi2i |  | 
						
							| 97 | 96 | ralbii |  | 
						
							| 98 | 88 97 | sylib |  | 
						
							| 99 |  | eqid |  | 
						
							| 100 |  | eqid |  | 
						
							| 101 |  | eqid |  | 
						
							| 102 |  | eqid |  | 
						
							| 103 | 74 75 76 77 78 79 80 55 81 82 83 84 87 98 99 100 101 102 | plydivlem4 |  | 
						
							| 104 | 103 | exp32 |  | 
						
							| 105 | 104 | ralrimdva |  | 
						
							| 106 | 72 105 | biimtrid |  | 
						
							| 107 | 106 | ancld |  | 
						
							| 108 |  | dgrcl |  | 
						
							| 109 | 108 | adantl |  | 
						
							| 110 | 109 | nn0zd |  | 
						
							| 111 | 6 | ad2antrr |  | 
						
							| 112 | 111 12 | syl |  | 
						
							| 113 | 112 | nn0zd |  | 
						
							| 114 | 110 113 | zsubcld |  | 
						
							| 115 |  | nn0z |  | 
						
							| 116 | 115 | ad2antlr |  | 
						
							| 117 |  | zleltp1 |  | 
						
							| 118 | 114 116 117 | syl2anc |  | 
						
							| 119 | 114 | zred |  | 
						
							| 120 |  | nn0re |  | 
						
							| 121 | 120 | ad2antlr |  | 
						
							| 122 | 119 121 | leloed |  | 
						
							| 123 | 118 122 | bitr3d |  | 
						
							| 124 | 123 | orbi2d |  | 
						
							| 125 |  | pm5.63 |  | 
						
							| 126 |  | df-ne |  | 
						
							| 127 | 126 | anbi1i |  | 
						
							| 128 | 127 | orbi2i |  | 
						
							| 129 | 125 128 | bitr4i |  | 
						
							| 130 | 129 | orbi2i |  | 
						
							| 131 |  | or12 |  | 
						
							| 132 |  | or12 |  | 
						
							| 133 | 130 131 132 | 3bitr4i |  | 
						
							| 134 |  | orass |  | 
						
							| 135 | 133 134 | bitr4i |  | 
						
							| 136 | 124 135 | bitrdi |  | 
						
							| 137 | 136 | imbi1d |  | 
						
							| 138 |  | jaob |  | 
						
							| 139 | 137 138 | bitrdi |  | 
						
							| 140 | 139 | ralbidva |  | 
						
							| 141 |  | r19.26 |  | 
						
							| 142 | 140 141 | bitrdi |  | 
						
							| 143 | 107 142 | sylibrd |  | 
						
							| 144 | 143 | expcom |  | 
						
							| 145 | 144 | a2d |  | 
						
							| 146 | 37 42 47 42 59 145 | nn0ind |  | 
						
							| 147 | 32 146 | syl |  | 
						
							| 148 | 147 | impcom |  | 
						
							| 149 | 5 | adantr |  | 
						
							| 150 | 31 148 149 | rspcdva |  | 
						
							| 151 | 18 150 | syl5 |  | 
						
							| 152 | 151 | rexlimdva |  | 
						
							| 153 | 17 152 | mpd |  |