Metamath Proof Explorer


Theorem prdsidlem

Description: Characterization of identity in a structure product. (Contributed by Mario Carneiro, 10-Jan-2015)

Ref Expression
Hypotheses prdsplusgcl.y Y=S𝑠R
prdsplusgcl.b B=BaseY
prdsplusgcl.p +˙=+Y
prdsplusgcl.s φSV
prdsplusgcl.i φIW
prdsplusgcl.r φR:IMnd
prdsidlem.z 0˙=0𝑔R
Assertion prdsidlem φ0˙BxB0˙+˙x=xx+˙0˙=x

Proof

Step Hyp Ref Expression
1 prdsplusgcl.y Y=S𝑠R
2 prdsplusgcl.b B=BaseY
3 prdsplusgcl.p +˙=+Y
4 prdsplusgcl.s φSV
5 prdsplusgcl.i φIW
6 prdsplusgcl.r φR:IMnd
7 prdsidlem.z 0˙=0𝑔R
8 fvexd φyIRyV
9 6 feqmptd φR=yIRy
10 fn0g 0𝑔FnV
11 10 a1i φ0𝑔FnV
12 dffn5 0𝑔FnV0𝑔=xV0x
13 11 12 sylib φ0𝑔=xV0x
14 fveq2 x=Ry0x=0Ry
15 8 9 13 14 fmptco φ0𝑔R=yI0Ry
16 7 15 eqtrid φ0˙=yI0Ry
17 6 ffvelcdmda φyIRyMnd
18 eqid BaseRy=BaseRy
19 eqid 0Ry=0Ry
20 18 19 mndidcl RyMnd0RyBaseRy
21 17 20 syl φyI0RyBaseRy
22 21 ralrimiva φyI0RyBaseRy
23 6 ffnd φRFnI
24 1 2 4 5 23 prdsbasmpt φyI0RyByI0RyBaseRy
25 22 24 mpbird φyI0RyB
26 16 25 eqeltrd φ0˙B
27 7 fveq1i 0˙y=0𝑔Ry
28 fvco2 RFnIyI0𝑔Ry=0Ry
29 23 28 sylan φyI0𝑔Ry=0Ry
30 27 29 eqtrid φyI0˙y=0Ry
31 30 adantlr φxByI0˙y=0Ry
32 31 oveq1d φxByI0˙y+Ryxy=0Ry+Ryxy
33 6 adantr φxBR:IMnd
34 33 ffvelcdmda φxByIRyMnd
35 4 ad2antrr φxByISV
36 5 ad2antrr φxByIIW
37 23 ad2antrr φxByIRFnI
38 simplr φxByIxB
39 simpr φxByIyI
40 1 2 35 36 37 38 39 prdsbasprj φxByIxyBaseRy
41 eqid +Ry=+Ry
42 18 41 19 mndlid RyMndxyBaseRy0Ry+Ryxy=xy
43 34 40 42 syl2anc φxByI0Ry+Ryxy=xy
44 32 43 eqtrd φxByI0˙y+Ryxy=xy
45 44 mpteq2dva φxByI0˙y+Ryxy=yIxy
46 4 adantr φxBSV
47 5 adantr φxBIW
48 23 adantr φxBRFnI
49 26 adantr φxB0˙B
50 simpr φxBxB
51 1 2 46 47 48 49 50 3 prdsplusgval φxB0˙+˙x=yI0˙y+Ryxy
52 1 2 46 47 48 50 prdsbasfn φxBxFnI
53 dffn5 xFnIx=yIxy
54 52 53 sylib φxBx=yIxy
55 45 51 54 3eqtr4d φxB0˙+˙x=x
56 31 oveq2d φxByIxy+Ry0˙y=xy+Ry0Ry
57 18 41 19 mndrid RyMndxyBaseRyxy+Ry0Ry=xy
58 34 40 57 syl2anc φxByIxy+Ry0Ry=xy
59 56 58 eqtrd φxByIxy+Ry0˙y=xy
60 59 mpteq2dva φxByIxy+Ry0˙y=yIxy
61 1 2 46 47 48 50 49 3 prdsplusgval φxBx+˙0˙=yIxy+Ry0˙y
62 60 61 54 3eqtr4d φxBx+˙0˙=x
63 55 62 jca φxB0˙+˙x=xx+˙0˙=x
64 63 ralrimiva φxB0˙+˙x=xx+˙0˙=x
65 26 64 jca φ0˙BxB0˙+˙x=xx+˙0˙=x